A Cost-Effective Simulation Algorithm for Inspection Interval Optimization: An Application to Mining Equipment

Onur Gölbaş, Nuray Demirel

PII: S0360-8352(17)30400-X
DOI: http://dx.doi.org/10.1016/j.cie.2017.09.002
Reference: CAIE 4888

To appear in: Computers & Industrial Engineering

Received Date: 17 April 2017
Revised Date: 30 August 2017
Accepted Date: 5 September 2017

Please cite this article as: Gölbaş, O., Demirel, N., A Cost-Effective Simulation Algorithm for Inspection Interval Optimization: An Application to Mining Equipment, Computers & Industrial Engineering (2017), doi: http://dx.doi.org/10.1016/j.cie.2017.09.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
A Cost-Effective Simulation Algorithm for Inspection Interval Optimization: An Application to Mining Equipment

Onur Gölbaşı* and Nuray Demirel

* Dr.; Department of Mining Engineering, Colorado School of Mines, CO 80401, Colorado, The USA; Phone:+1 720-327 3112; Fax: +1 303-273 3719; E-mail: golbasi@mines.edu

b Assoc. Prof. Dr.; Department of Mining Engineering, Middle East Technical University, 06800, Ankara, Turkey; Phone: +90-312-210 5813; Fax: +90-312-210 5822; E-mail: ndemirel@metu.edu.tr

Abstract

In machinery maintenance policies, regular inspection intervals should be specified in such a way that the cumulative of direct and indirect financial consequences of maintenance activities should be minimized while supporting the functional health of system components. This study aims to develop a simulation algorithm, called the time-counter, to optimize inspection intervals. In the algorithm, uptime and downtime behaviors of the system components and production losses in the corrective repairs are considered random values. Delay time concept is regarded when estimating failure detection periods and deciding on the required maintenance type. In addition, the developed model is applied to two active draglines and their inspection intervals are optimized for 232 and 184 hours for Dragline-1 and Dragline-2, respectively. The optimized values are observed to decrease the total maintenance cost by 5.9 and 6.2 percent compared to the current interval of 160 hours. The main novelties of the study are that i) the proposed concept which allows for the simultaneous assessment of system components in an incremental time span has not been proposed in the literature when deciding on optimal inspection intervals, ii) it is the first initiative in inspection optimization of a mining machinery system, and iii) it uses real datasets on lifetime, repair time, and financial values that are rarely observed in the maintenance studies.

Keywords: Inspection interval; optimization; delay time; production systems; maintenance cost.

1 Introduction

Inspections are the integral parts of maintenance policies, especially in machine-based production cycles. These activities are generally performed in regular intervals to identify, examine, and recover potential abnormalities in working machinery systems. An inspection may entail various work packages such as: i) visual inspection of system elements, ii) preventive or corrective rectification of defects via repair or replacement activities, iii) preventive replacement of predefined components in deterioration period, iv)
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات