Cancer Cell

Coordinated Splicing of Regulatory Detained Introns within Oncogenic Transcripts Creates an Exploitable Vulnerability in Malignant Glioma

Graphical Abstract

Highlights

- DI splicing is a regulated pathway promoting proliferation gene expression
- GBMs assume control of the DI pathway, creating an exploitable vulnerability
- PRMT5 inhibition induces DI inclusion and yields potent antitumor activity
- CLNS1A/RIOK1 ratio is a predictive biomarker for PRMT5 inhibitor sensitivity

Authors

Christian J. Braun, Monica Stanciu, Paul L. Boutz, ..., Phillip A. Sharp, Michael T. Hemann, Jacqueline A. Lees

Correspondence

hemann@mit.edu (M.T.H.), jalees@mit.edu (J.A.L.)

In Brief

Braun et al. show that glioblastoma is selectively sensitive to the inhibition of PRMT5 and identify a predictive biomarker for this sensitivity. PRMT5 inhibition primarily disrupts the removal of detained introns, which results in the reduction of functional transcripts of mainly proliferation-associated genes.

Braun et al., 2017, Cancer Cell 32, 1–16

October 9, 2017 © 2017 Elsevier Inc.

http://dx.doi.org/10.1016/j.ccell.2017.08.018
Coordinated Splicing of Regulatory Detained Introns within Oncogenic Transcripts Creates an Exploitable Vulnerability in Malignant Glioma

Christian J. Braun,1,8 Monica Stanciu,1,8 Paul L. Boutz,1,8 Jesse C. Patterson,1 David Calligaris,2 Fumi Higuchi,3 Rachit Neupane,1 Silvia Fenoglio,1 Daniel P. Cahill,3 Hiroaki Wakimoto,3 Nathalie Y.R. Agar,2,4,5 Michael B. Yaffe,1,6,7 Phillip A. Sharp,1 Michael T. Hemann,1,* and Jacqueline A. Lees1,9,*

1The David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
2Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
3Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
4Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
5Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
6Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
7Division of Acute Care Surgery, Trauma, and Critical Care, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
8These authors contributed equally
9Lead Contact
*Correspondence: hemann@mit.edu (M.T.H.), jalees@mit.edu (J.A.L.)
http://dx.doi.org/10.1016/j.ccell.2017.08.018

SUMMARY

Glioblastoma (GBM) is a devastating malignancy with few therapeutic options. We identify PRMT5 in an in vivo GBM shRNA screen and show that PRMT5 knockdown or inhibition potently suppresses in vivo GBM tumors, including patient-derived xenografts. Pathway analysis implicates splicing in cellular PRMT5 dependency, and we identify a biomarker that predicts sensitivity to PRMT5 inhibition. We find that PRMT5 deficiency primarily disrupts the removal of detained introns (DIs). This impaired DI splicing affects proliferation genes, whose downregulation coincides with cell cycle defects, senescence and/or apoptosis. We further show that DI programs are evolutionarily conserved and operate during neurogenesis, suggesting that they represent a physiological regulatory mechanism. Collectively, these findings reveal a PRMT5-regulated DI-splicing program as an exploitable cancer vulnerability.

INTRODUCTION

Glioblastoma (GBM) is a highly malignant brain tumor with a grim clinical prognosis despite aggressive and multi-modal treatment regimens (Stupp et al., 2005). With few exceptions, there is a dearth of targeted therapeutics to treat this disease (Lau et al., 2014). Moreover, there is a lack of well-defined GBM dependencies that represent possible therapeutic targets. In vivo loss-of-function screens offer an unbiased method to identify cellular processes that represent key vulnerabilities for cancer cells. These screens are particularly useful in identifying cancer dependencies that are not induced by mutation and, consequently, not revealed by tumor genome sequencing efforts (Gargiulo et al., 2014). However, high-throughput genetic approaches are challenging in GBM where the heterogeneity and consequent differential growth rates of patient-derived xenograft (PDX) tumors causes high experimental noise.

Recent publications have suggested that aberrant RNA splicing is essential to the development and progression of certain malignancies (Dvinge et al., 2016). A putative regulator
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات