Risk Management in Petroleum Development Projects: Technical and Economic Indicators to Define a Robust Production Strategy

Susana M.G. Santos, Ana Teresa F.S. Gaspar, Denis J. Schiozer

PII: S0920-4105(17)30152-3
DOI: http://dx.doi.org/10.1016/j.petrol.2017.01.035
Reference: PETROL3844

To appear in: Journal of Petroleum Science and Engineering

Received date: 29 August 2016
Revised date: 16 December 2016
Accepted date: 17 January 2017


This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Risk Management in Petroleum Development Projects: Technical and Economic Indicators to Define a Robust Production Strategy

Susana M. G. Santos (1,*), Ana Teresa F. S. Gaspar (1), Denis J. Schiozer (1)

(1) Department of Energy, School of Mechanical Engineering, University of Campinas, Brazil
(*) corresponding author: sgraca@dep.fem.unicamp.br

Abstract

In this study, we consider robustness as a risk management method in the development of complex petroleum fields, complementing the well-known techniques of acquiring new information and adding flexibility to the production system. To create a robust production strategy we aim to reduce sensitivity to uncertainty. Our methodology is based on the analyzed performance of an optimized production strategy, covering all possible scenarios. We use technical and economic indicators to objectively identify and quantify refinements in this strategy to assure good performance across possible scenarios. We focus on the robust number and placement of wells, and robust platform processing capacities. We consider the robustness of net present value and of the recovery factor, computed using Multi-Attribute Utility Theory. We quantify the risk through semi-deviation, instead of standard deviation, to focus on the downside volatility. Refining an optimized production strategy significantly improved the optimization process by increasing the expected value of each objective and, dramatically reduced the downside risk.

Keywords: field development; uncertainty management; robustness; production strategy; semi-deviation; reservoir simulation.

1. Introduction

1.1. Managing uncertainty in petroleum field development – Information, Flexibility and Robustness

The upstream sector, particularly in offshore fields, is considered high-risk, comprising considerable investment in complex, uncertain scenarios. Various sources of uncertainties may coexist during the development phase, the focus of this study: (1) geological uncertainties, associated with recoverable reserves and flow characteristics; (2) operational uncertainties, related to system availability; and (3) economic uncertainties, such as oil price, capital expenditures (CAPEX) and operational expenditures (OPEX). Thus, uncertainty and risk analyses are fundamental to decide whether and how to develop a field.
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات