Combinatorial optimization algorithm of MIGA and NLPQL for a Plug-in Hybrid Electric Bus parameters optimization

Hongwen Hea,b,*, Lu Yia,b, Jiankun Penga,b

a National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China
b Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing 100081, China

Abstract

In this paper, the fuel economy is chosen as the optimization target of a Plug-in hybrid electric bus (PHEB). The optimization mathematical model of PHEB powertrain parameters is established, which is based on optimal energy management strategy, and the energy management strategy of this model is formulated by dynamic programming (DP) algorithm. Firstly, PHEB fuel economy is chosen as the objective function of parameter optimization. Then, combinatorial optimization algorithm is designed by Multi-Island genetic algorithm (MIGA) and Sequential Quadratic Programming-NLPQL. MIGA is used for global optimization firstly, and the NLPQL is used for local optimization. Finally, experiments results prove that PHEB fuel consumption per 100 km has reduced to 17.41 L diesel from 18.51 L diesel, and electricity consumption per 100 km remains the same level.

© 2016 The Authors. Published by Elsevier Ltd.

Selection and/or peer-review under responsibility of ICAE

Keywords: Parameters optimization; Plug-in Hybrid electric bus; Multi-Island genetic algorithm; Sequential Quadratic Programming-NLPQL

1. Introduction

Plug-in hybrid electric vehicle (PHEV) is a new type of Hybrid electric vehicle. PHEV is a complex nonlinear system consisted of engine, motor, power battery and electromechanical coupling device [1]. In practical engineering, different engine powers, motor powers and battery capacity will make PHEV show different dynamic performances and fuel economy. PHEB is a kind of PHEV. To solve the problem of PHRB parameter optimization, Multi-island Genetic algorithm (MIGA) [2], evolutionary algorithms (EAS) [3], Sequential Quadratic Programming-NLPQL [4] and more combinatorial optimization algorithms are widely used in the whole world.

MIGA and NLPQL have been widely used in various kinds of optimization problem. MIGA has a better ability on global optimization, but it is slightly weak in local search. At the same time, NLPQL has a strong ability on local search and a high search efficiency [5]. In this paper, NLPQL, which has a good stability to use together with other algorithms, and MIGA are combined. The Multi-Island genetic algorithm (MIGA) is used for global optimization firstly, then the NLPQL was used for local optimization.
to new population, to get the optimized solution. Finally, the optimization results of combinatorial optimization algorithm can be proved by DP program simulation experiments.

2. PHEB powertrain structure and model building

2.1. PHEB powertrain structure

In this paper, the plug-in hybrid bus powertrain adopts series-parallel structure, specifically shown in Figure 1, where the engine and ISG motor are mechanically integrated; the ISG motor is connected to the main drive motor through a clutch, the powertrain structure and initial vehicle parameters of PHEB can reference Ref. [6].

![Fig. 1. PHEB Powertrain](image)

2.2. Optimization variables

Because of the special requirements to ISG motor by single-axle parallel hybrid system structure of PHEB, the peak power of engine \(\text{\(P_{E_{\text{peak}}} \)}} \), the peak power of main drive motor \(\text{\(P_{M_{\text{peak}}} \)}} \), the battery capacity \(\text{\(Q_b \)}} \) and the reduction ratio \(\text{\(i_g \)}} \) are optimized in this paper. The results of preliminary matching for PHEB hybrid system structure parameters are chosen as the upper boundary and lower boundary of optimized variables, through rising or falling by 20%, as shown in table 1.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Initial value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_{E_{\text{peak}}} /\text{kw})</td>
<td>117.6</td>
<td>176.4</td>
<td>147</td>
</tr>
<tr>
<td>(P_{M_{\text{peak}}} /\text{kw})</td>
<td>120</td>
<td>170</td>
<td>148</td>
</tr>
<tr>
<td>(i_g)</td>
<td>4.26</td>
<td>6.40</td>
<td>5.33</td>
</tr>
<tr>
<td>(Q_b /A*\text{h})</td>
<td>57.6</td>
<td>86.4</td>
<td>72</td>
</tr>
</tbody>
</table>

2.3. Objective function

Objective function of parameters optimization is to find with the minimum fuel consumption \(V_{fuel} \) under the premise of meeting the constraint conditions.
دریافت فوری
متن کامل مقاله
امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات