Accepted Manuscript

Fatigue crack growth predictions based on damage accumulation ahead of the crack tip calculated by strip-yield procedures

Samuel Elias Ferreira, Jaime Tupiassú Pinho de Castro, Marco Antonio Meggiolaro

PII: S0142-1123(18)30085-9
DOI: https://doi.org/10.1016/j.ijfatigue.2018.03.001
Reference: JIJF 4602

To appear in: International Journal of Fatigue

Received Date: 12 October 2017
Revised Date: 13 January 2018
Accepted Date: 1 March 2018

Please cite this article as: Elias Ferreira, S., Tupiassú Pinho de Castro, J., Antonio Meggiolaro, M., Fatigue crack growth predictions based on damage accumulation ahead of the crack tip calculated by strip-yield procedures, International Journal of Fatigue (2018), doi: https://doi.org/10.1016/j.ijfatigue.2018.03.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Fatigue crack growth predictions based on damage accumulation ahead of the crack tip calculated by strip-yield procedures
Samuel Elias Ferreira*; Jaime Tupiassú Pinho de Castro; Marco Antonio Meggiolaro
Mechanical Engineering Department, PUC-Rio, Brazil
*+55 022 981216480, ferreirase@hotmail.com

Abstract
Elber assumed a long time ago that ΔK_{eff} is the driving force for fatigue crack growth (FCG), and his hypothesis is the basis for strip-yield models widely used to predict residual lives of cracked components. However, this hypothesis cannot explain many load sequence effects observed in practice. Hence, it is at least worth to verify if FCG models based on ΔK_{eff} are indeed intrinsically better than concurrent models based on other principles. To do so, the same mechanics is used to predict FCG rates based both on Elber’s ideas and on the alternative view that FCG is instead due to damage accumulation caused by the cyclic strain history ahead of the crack tip, an idea does not need or use the ΔK_{eff} hypothesis. To compare both approaches fairly, FCG rates are estimated by damage accumulation using the cyclic strain ranges induced by plastic displacements calculated by the very same procedures used by strip-yield models, assuming there are strain limits associated both with FCG thresholds and with material toughness. Despite based on apparently conflicting principles, both models can reproduce quite well FCG curves, a somewhat surprising result. Besides confirming that data fitting cannot be used to prove any model superiority, this result indicates that the ΔK_{eff} hypothesis is not a necessary requirement to explain the FCG behavior.

Keywords: Fatigue crack growth models; strip-yield mechanics; fatigue crack closure; effective stress intensity range; damage accumulation ahead of the crack tip.

Introduction
Fatigue life predictions of cracked structural components are required in most design and/or structural integrity evaluation tasks. Since Paris and Erdogan clearly demonstrated that stable fatigue crack growth (FCG) rates da/dN correlate well with stress intensity factor (SIF) ranges ΔK [1], many similar rules have been proposed to consider effects of other parameters that can affect FCG rates as well, such as the peak load K_{max} or the load ratio $R = K_{min}/K_{max}$, as well as the material limits for da/dN, namely FCG thresholds $\Delta K_{th}(R)$ and the critical SIF K_{IC} or K_C [2]. Another important issue for FCG modeling came after Elber experimentally found the crack closure phenomenon [3]. He observed that fatigue cracks can partially close over the lower portion of their load cycles even under $R > 0$, and only completely open after the applied SIF exceeded the so-called crack opening load K_{op}. Moreover, from this observation, he then assumed that FCG can only occur only after the crack tip is fully open under loads greater than K_{op} (supposing that only then they would become able to expose their tips to additional fatigue damage) [4]. Consequently, he postulated that ΔK_{eff} ($\Delta K_{eff} = K_{max} - K_{op}$ if $K_{op} > K_{min}$, or $\Delta K_{eff} = \Delta K$ otherwise) would be the actual FCG driving force (instead of SIF ranges ΔK or SIF combinations like $\{\Delta K, K_{max}\}$ or $\{\Delta K, R\}$).

Since the ΔK_{eff} hypothesis can reasonably explain many (but certainly not all) sequence or load-order effects in FCG, like crack growth delays or arrests after overloads (OL) and the R-sensitivity of FCG thresholds (on non-inert environments), it has been popular among fatigue experts ever since its proposal. It has been used as the basis for many semi-empirical FCG models, in particular the so-called strip-yield models (SYM) that numerically estimate K_{op} and ΔK_{eff}, and from them FCG lives using a suitable $da/dN = f(\Delta K_{eff})$ equation properly fitted to experimental data [5–9]. However, although the fatigue crack closure phenomenon is well documented and proven [10–13], its real significance for FCG is still controversial, to say the least. Indeed, the ΔK_{eff} hypothesis cannot explain many FCG peculiarities, see for instance [14–19] for an overview of them.
دریافت فوری

امکان دانلود نسخه تمام متن مقالات انگلیسی
амکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات