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a b s t r a c t 

Parameter identification is an important and widely used process across the field of biomedical engineer- 

ing. However, it is susceptible to a number of potential difficulties, such as parameter trade-off, causing 

premature convergence at non-optimal parameter values. The proposed Dimensional Reduction Method 

(DRM) addresses this issue by iteratively reducing the dimension of hyperplanes where trade off occurs, 

and running subsequent identification processes within these hyperplanes. The DRM was validated using 

clinical data to optimize 4 parameters of the widely used Bergman Minimal Model of glucose and insulin 

kinetics, as well as in-silico data to optimize 5 parameters of the Pulmonary Recruitment (PR) Model. 

Results were compared with the popular Levenberg–Marquardt (LMQ) Algorithm using a Monte-Carlo 

methodology, with both methods afforded equivalent computational resources. The DRM converged to a 

lower or equal residual value in all tests run using the Bergman Minimal Model and actual patient data. 

For the PR model, the DRM attained significantly lower overall median parameter error values and lower 

residuals in the vast majority of tests. This shows the DRM has potential to provide better resolution of 

optimum parameter values for the variety of biomedical models in which significant levels of parameter 

trade-off occur. 

© 2017 Published by Elsevier Inc. 

1. Introduction 

Parameter identification is the process of identifying the set 

of parameters for a model that optimize a cost or error func- 

tion. Cost functions are more commonly employed during optimi- 

sation of control systems, [11] . Error function values ( ѱ ) are mini- 

mized to find model parameters that best align a model with mea- 

sured data, The resulting parameters can be used either for di- 

agnostic purposes [10,20] or for predictive modelling or extrap- 

olation [6,17] . These two broad cases encompass a wide variety 

of valuable biomedical applications, across a number of biological 

systems, including the circulatory [17] , glycemic [10,11] and pul- 

monary [20] systems. 

A core parameter identification method is iterative gradient de- 

scent. Here, the gradient is determined via a Jacobian ( d ψ/ d y ) 

evaluated at a certain point in the parameter space ( y ) to deter- 

mine the direction that gives the steepest decrease in ѱ [2,21] . The 

method then advances in the parameter space in the direction of 
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this gradient before re-evaluating the Jacobian for the next itera- 

tion. Gradient descent methods are considered to be relatively ro- 

bust, but can converge extremely slowly if positioned far from the 

optimum point [15] . When iterative gradient descent is coupled 

with a weighted Gauss-Newton algorithm, gradient descent be- 

comes the popular Levenberg–Marquardt (LMQ) algorithm [14,15] , 

which has attained a pseudo gold-standard status in parameter 

identification. 

Parameter identification can suffer from a number of defects 

which result in premature declarations of convergence and fail- 

ure to correctly identify the optimum parameter values. Such fail- 

ures can occur due to parameter trade-off, where two or more 

parameters can define the same characteristics in observed be- 

haviour [1,5,7 , 9] (i.e. d ψ / dy 1 ≈ d ψ /dy 2 ). A small degree of this be- 

haviour occurs in most models and only becomes deleterious when 

the trade-off is strong. Significant parameter trade-off can lead to 

changes in a parameter being offset by changes in another while 

maintaining a similar ѱ minima, resulting in elongated iso-error 

contours and regions of very low error gradients. This phenomenon 

can cause parameter identification methods to determine that any 

point within this region of extreme parameter trade-off is an op- 

tima due to difficulties in detecting relatively low error gradients 

[7,8] . 
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Fig. 1. Parameter trade-off in the pulmonary recruitment (PR) model. 

Fig. 1 shows parameter trade-off and the associated failure 

to correctly detect optima during LMQ identification from near 

ideal starting points for the Pulmonary Recruitment (PR) Model, 

as observed in [8] . Despite the relatively close proximity of the 

start points to the true solution, the algorithm proceeds along the 

steep error gradients into the low error trade-off region. LMQ de- 

clares convergence once reaching this region without iterating fur- 

ther. This phenomenon occurs with relative frequency in param- 

eter identification, and can sometimes be mistaken for premature 

convergence due to local minima. Note that these solutions lie ap- 

proximately along a line of minimal error that intersects with the 

true model solution. 

The proposed Dimensional Reduction Method (DRM) leverages 

the tendency of parameter trade-off to manifest on a unique n –

1 dimensional hyperplane for an n dimensional problem (e.g. a 

2D plane for a 3D problem, or a 1D line for a 2D problem, as in 

Fig. 1 ) [7] . For an n dimensional problem, the DRM method de- 

fines this hyperplane using n Levenberg-Marquardt solutions. n –

1 Levenberg-Marquardt solutions are then found on this n – 1 di- 

mensional hyperplane, and an n – 2 dimensional hyperplane is de- 

fined. This process is repeated until Levenberg–Marquardt is ulti- 

mately run in 1 dimension to determine the optimum point. By 

constraining gradient descent to operate only within the region of 

parameter trade-off, relatively large error gradients orthogonal to 

the hyperplane are ignored allowing easier detection of the shal- 

lower contours within the parameter trade-off region. This method 

is easily generalizable for any number of parameters, and has po- 

tential to be utilized as a framework for most parameter identifi- 

cation methods. 

The DRM method is validated via a Monte-Carlo methodology 

across two models. The first of these models is the widely used 

Bergman Minimal Model of glucose and insulin kinetics [4] . Four 

model parameters are optimized on 36 sets of experimentally de- 

rived data across a cohort of 12 subjects. This model was selected 

due to it being widely recognized and employed, and the avail- 

ability of experimental data allowing for validation of the DRM ap- 

proach on a data set with model-data mismatch, noise, sparse data 

points and various other real world constraints in play. 

The second model employed is the Pulmonary Recruitment (PR) 

model, which is a lung model that contains a large number of dis- 

continuities due to the presence of multiple Heaviside functions 

and thus is difficult to accurately identify [18,19] . Five parameters 

of this model are optimized using in-silico data designed to ensure 

that all elements of the model are in effect. The use of in-silico 

data provides a numerically rigorous comparison between the two 

methods without real world constraints such as model data mis- 

match or unclear true parameter values. Across both of these mod- 

els, the DRM method is compared to the widely used LMQ. This 

validation thus encompasses real data as well as simulated data 

and two different models with different parameter numbers ( n = 4 

and n = 5). 

2. Methods 

2.1. The dimensional reduction method 

Note that all vectors are column vectors. A model is defined to 

be dependent on a vector of model parameters y ∈ R 

n . Let u ( t , 

y ) denote the value of a measurable output u at time t, given pa- 

rameters y . For a set of time samples t S = { t 1 , t 2 , . . . t S } , each model 

solution defines a vector u ( t S , y ) ∈ R 

S . When a sequence of obser- 

vations u S at times t S is available, the model error ( ψ) can be ex- 

pressed as: 

ψ ( y ) = u ( t S , y ) − u S (1) 

The parameter identification is achieved by finding 

y opt = argmi n y 

∥∥ψ ( y ) 
∥∥

2 
(2) 

2.1.1. Initialization of the method 

Assume that the vector y ε R 

n of model parameters is known to 

lie in a rectangular region [ y min, 1 , y max, 1 ] × ��� × [ y min, n , y max, n ]. 

First transform the domain to the unit cube in R 

n by setting 

A 0 := diag ( y max − y min ) (3a) 

ζ0 := y min (3b) 

Choose n sets of random initial points x (0) 
j 

∈ [ 0 , 1 ] n 

( j = 1 , . . . , n ) , and use gradient descent to compute 

argmi n x ‖ ψ( A 0 x + ζ0 ) ‖ 2 (equivalent to ‖ ψ( y ) ‖ 2 ) from these initial 

guesses. Let the corresponding family of approximate optima be 

denoted { x (0) , opt 
j 

} n 
j=1 

. We assume that the affine span of these 

n points is an ( n − 1 ) -dimensional hyperplane 1 , 2 . These optima 

will enable reduction of the hyperplane dimension and continued 

searching. 

2.1.2. First dimension reduction 

To achieve the dimension reduction it is necessary to 

parametrize the hyperplane. Calculate a normal vector θ(n ) ∈ R 

n to 

the affine span of { x (0) , opt 
j 

} n 
j=1 

such that (
x 

( 0 ) , opt 

j 

)T 
θ( n ) = 1 (4) 

for each j = 1 , . . . , n . Eq. (4 ) provides a system of linear algebraic 

equations that uniquely defines θ ( n ) . Let i ∗ = argma x i | θ(n ) 
i 

| . i ∗ in- 

dexes the coordinate direction in parameter space that is closest 

to perpendicular to the hyperplane defined by { x (0) , opt 
j 

} n 
j=1 

, which 

is the direction that corresponds to the parameter likely to be most 

accurately identified at this point. The hyperplane is parametrized 

by the ( n − 1 ) coordinates excluding i ∗ as follows: 

Let B 

( n ) be the ( n − 1 ) × n matrix obtained by removing the i ∗

row of the n × n identity matrix; that is, 

B 

( n ) 
i j 

= 

{ 

1 i < i ∗, j = i, 
1 i ≥ i ∗, j = i + 1 , 

0 otherwise . 

1 The affine span of { x 1 , . . . , x n } is the set of all 
∑ n 

i =1 a i x i where 
∑ n 

i =1 a i = 1 and 

each a i ε R . 
2 In the untypical case that the affine span has dimension less than ( n − 1 ) , re- 

dundant points can be removed, and additional ones generated from further ran- 

dom initial conditions. 
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