Accepted Manuscript

Experimental performance analysis of low concentration ratio solar parabolic trough collectors with nanofluids in winter conditions


PII: S0960-1481(17)31163-1
DOI: 10.1016/j.renene.2017.11.062
Reference: RENE 9464

To appear in: Renewable Energy

Received Date: 26 May 2017
Revised Date: 14 November 2017
Accepted Date: 21 November 2017


This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Experimental performance Analysis of Low Concentration Ratio Solar Parabolic Trough Collectors with Nanofluids in Winter Conditions

Mirza Abdullah Rehan¹, Muzaffar Ali¹*, Nadeem Ahmed Sheikh², M. Shahid Khalil¹, Ghulam Qadar Chaudhary¹, Tanzeel ur Rashid¹, M. Shehryar¹,

¹Mechanical Engineering Department, University of Engineering and Technology, Taxila, Pakistan
²Mechanical Engineering Department, Faculty of Engineering, HITEC University, Taxila, Pakistan

*Corresponding author: Muzaffar Ali; Email address: Muzaffar.ali@uettaxila.edu.pk

ABSTRACT

Applications of solar thermal systems especially for heating are quiet reliable. At present the domestic use of such technologies especially for hot water and space heating applications is limited to flat plate collectors and evacuated tubes. Moreover, commercial use of nano-fluids is also scarce in these applications. The present study is designed to evaluate the experimental performance analysis of a locally developed Parabolic Trough Collector (PTC) system having concentration ratio of 11 for domestic heating applications primarily. Two metallic oxides water based nanofluids i.e. Al₂O₃/H₂O and Fe₂O₃/H₂O are used at three particles concentrations of 0.20%, 0.25% and 0.30% by weight at 1.0, 1.5 and 2.0 L/min flow rates. The experimentation is performed under wide range of operating conditions in terms of solar radiation and ambient conditions at Taxila, Pakistan. The maximum efficiencies achieved with Al₂O₃ and Fe₂O₃ nanofluids at 2 L/min are 13% and 11% higher respectively compared to water under same operating conditions. Al₂O₃ nanofluids seemed more favorable in the enhancement of efficiency of PTC compared to Fe₂O₃ for domestic applications using PTC. The results offer significant insight from the commercialization aspect for the working of locally developed linear PTC and influence of nano-fluids for space heating application.

Keywords:
Solar energy, Parabolic trough collector, Nano fluids, Thermal performance, Pakistan

Nomenclature
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات