Economic growth and income distribution in Mexico: A cointegration exercise

W. Adrián Risso a, Lionello F. Punzo b,c, Edgar J. Sánchez Carrera d,*

a Institute of Economics, Universidad de la República, Uruguay
b Department of Economics and Statistics, SIENA University, Italy
c INCT/PPED, UFRJ, Brazil
d Faculty of Economics, Autonomous University of San Luis Potosí, Mexico

A R T I C L E I N F O

Article history:
Accepted 29 August 2013

JEL classification:
O11 O40 D3 C23

Keywords:
Growth Inequality Cointegration analysis Exogeneity Granger causality tests

A B S T R A C T

The empirical evidence on the relationship between income inequality and economic growth is widely recognized and, now, there are rich databases for carry on panel-data type of analyses. However, time series studies for specific countries may be more attractive and yield revealing results. For this reason, we study hereafter the long-run relationship between economic growth and income inequality in the case of Mexico. To this end, a time series of data for the Gini coefficients from Solt (2011) is used over the period 1968–2010, within a cointegration exercise. Being related to a single country, our results are suffering less from problems of heterogeneity, endogeneity, and measurement errors, which are commonly encountered in cross-country growth regressions. We first investigate (and confirm) that the two series of per capita GDP and Gini index are cointegrated. Five different methodologies are implemented in our analysis, so that the robustness of cointegration results is guaranteed. We consistently also find that the relationship between those variables is negative. Moreover, results show the per capita GDP to be weakly exogenous. According to tests for Granger causality, unidirectional causality runs from per capita GDP to the Gini index.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

1.1. The literature and the justification for a single-country regression model

The relationship between growth and inequality has been extensively debated in the literature, older and more recent, in a variety of ways (one can check the introduction by Gobbin and Rayp (2008), and read a good recent survey in Shin (2012)). Still, no final undisputed conclusions have been reached on a number of issues.

In classical models, economic growth depends mainly on the rate at which nations accumulate productive resources, and is linked to the aggregate savings rate. In such vision, distributional considerations matter for growth only if households’ propensity to save varies with income and/or wealth. If the rich save at a higher rate (a view proposed by e.g. Nicholas Kaldor), distributionally unequal societies would be able to build up their productive capacity (and speed up their growth) faster than more equal ones. Inequality would foster growth because output growth requires capital accumulation and, for example, new industries typically require larger investments. Thus, a higher concentration of income/wealth supports a higher capital accumulation rate and, in the example, would stimulate growth through the development of more capital-intensive industries. (More recently, Forbes (2000) and Arjona et al. (2001) seem to return to this view, though via distinct arguments.)

On the other hand, in a well-known article, Kuznets (1955) found the famous inverted U pattern between per capita income and inequality on the basis of a cross-country analysis. According to the author’s original interpretation, the foremost driving force would be the structural change occurring as labor shifted from a poor and less productive traditional sector to a more productive and differentiated modern one. Arguments supporting a positive and a negative relationship (the two arms of the U-Shape relationship) have both been offered. (Bénabou (1996) and Aghion et al. (1999) provide excellent surveys of various contributions to this debate.)

Frank (2009) has investigated the long-run relationship between (a measure of) inequality and growth performance in the United States, to conclude that there is a significant positive relationship between them. Using panel data for twelve developed economies, Andrews et al. (2011) find that, since 1960, higher inequality would be associated with higher growth. On the other hand, Davis’ (2007) model generates a relationship between growth and income inequality that is negative across countries and positive within countries over time. Recently, in Shin’s...
managed to grow at 5%–6% in the ensuing three years, to drop again from 6.2% in 2000 down to — 0.2% in 2001. However, improved economic conditions in the United States after 2001 helped to recover soon. Mexico’s GDP grew at a 3% average annual rate between 2001 and 2007, but it slowed down to 1.5% in 2008 and then contracted at a sharp −6.5% in 2009. E.g., 2006 Mexican GDP growth rate was 4.8% but one year later it had decreased to 3.3%. The unemployment rate went from 3.7% in 2006 up to 5.5% in 2009. Labor productivity growth remained low throughout: its average annual growth rate was a modest 1% between 2001 and 2007, in 2008 it fell by 2.1%. Per capita GDP, which in 2008 was 31% relative to the United States, is the lowest in the OECD (see OECD Report on the Mexican economy, 2010).

Mexico is also a country of great contrasts, where levels of poverty and deficits in the social indicators are higher than one might expect at its level of development. The issue of (the levels and evolution of) poverty and inequality is closely related with the shortcomings of certain external shocks and with the process of structural reform initiated in the eighties. In particular, there are two components of the latter that may have very significantly affected economic and social differentiation. One of them is the trade liberalization which began in the mid-eighties and culminated with the signing of the NAFTA treaty, then launched in 1994. The other is the land reform bill that authorizes the privatization of ejidos (i.e. areas of communal land of which community members individually possess and farm parcels).

Thus, income inequality in Mexico rose sharply between 1984 and 1994 with the Gini coefficient going from 49.1 up to 54.9 (Bouillon et al., 1999) and, the Lorenz curves showing no crossings, such increase is unambiguous (Lustig and Szekely, 1997). Bouillon et al. (1999) attempt to identify which factors lie behind this rise. Results of their exercise show that the widening gap in the “returns” to education explains about fifty percent of the observed increase, while the “returns” to regional location account to around 24%, in the South alone for a 15%.

To compare with our exercise hereafter, it is worth recalling the Ortega-Díaz (2006) analysis relying on dynamic panel data analysis, with both urban personal income for grouped data and household income from national surveys. They find that inequality and growth are positively related. However, with a periodization, two relationships emerge: 1) a negative influence of inequality on growth during a period of restrictive trade policies, and 2) a positive relationship with trade openness. Compared to Ortega-Díaz, our paper uses a different methodology, cointegration. With this approach, we come up with a robust result about the existence of a cointegrating relationship between inequality and economic growth.

Henceforth, we look at such long-run relationship over the 1968–2010 history of Mexico. Economic growth is measured by per capita GDP and inequality by the Gini coefficient (also known as the Gini index or Gini ratio). Solt (2011) has recently provided annually-based time series of Gini coefficients for several countries. Therefore, no one has the 30-odd observations needed to carry out our type of analysis.

Section 2 of the paper describes the database and the specification of the model. Then, Section 3 presents our empirical results for the cointegrating equations with various approaches, while Section 4 reports a test for Granger causality. Section 5 concludes.

2. Data and model specification

2.1. Data set

Annual per capita GDP is, of course, gross domestic product divided by midyear population (data are in constant 2000 U.S. dollars), where GDP is calculated without deductions for depreciation of fabricated
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات