Electricity price behavior and carbon trading: New evidence from California

C.K. Woo, Y. Chen, A. Olson, J. Moore, N. Schlag, A. Ong, T. Ho

Department of Asian and Policy Studies, Education University of Hong Kong, 10 Lo Ping Road, Tai Po, New Territories, Hong Kong
Energy and Environmental Economics, Inc. (E3), 101 Montgomery Street, Suite 1600, San Francisco, CA 94104, USA
Independent SAS Analyst, Flat H, 16/F, Block 3, Wing Fai Centre, Fanling, New Territories, Hong Kong

HIGHLIGHTS
- Presents new evidence on the California cap-and-trade (C & T) program on the state’s day-ahead electricity prices.
- Explains the C & T program’s effectiveness in reducing CO2 emissions in the western portion of North America.
- Recommends expanding the C & T program’s geographic scope to improve its effectiveness.

ARTICLE INFO
Keywords:
Electricity price behavior
Day-ahead market
Carbon trading
CO2 emissions cost pass-through
California

ABSTRACT
The incidence of climate change policy is of great interests to economists, policy makers, producers and consumers. Using the daily market data for a 65-month period of 01/01/2011–05/31/2016, this empirical paper documents that the California Independent System Operator’s day-ahead prices have a CO2 premium approximately equal to natural-gas-fired generation’s marginal cost of CO2 emissions. This finding prevails in the six time-of-day periods developed to match the pricing periods used by the state’s local distribution companies and the bilateral trading of wholesale electricity in the Western Interconnection, a large electricity grid serving the western portion of North America and a Mexican state. Our findings suggest that the California cap-and-trade (C & T) program is effective in internalizing CO2 emission costs of the in-state natural-gas-fired generation. However, the program’s economic efficiency is compromised by the unintended consequence of power laundering under inter-regional trading of wholesale electricity. While the program encourages the Pacific Northwest’s hydro export that displaces California’s natural-gas-fired generation, it also induces output increases by non-California coal- and natural-gas-fired generators in the Western Interconnection. Hence, reducing the overall CO2 emissions in the Western Interconnection requires expanding the program’s geographic scope to meaningfully address the global warming problem.

1. Introduction

Three transformative events have taken place in the world’s electricity industry. The first event is market restructuring to introduce wholesale competition in Europe, North America, South America, Australia, New Zealand, and Asia [1–3]. Wholesale transactions occur via bilateral trading enabled by open transmission access and in centralized markets operated by an independent system operator based on the theory of locational marginal pricing [4–8]. Wholesale electricity market prices are highly volatile, leading to extensive research in price behavior and dynamics, forward contracts and tolling agreements, derivatives and risk management, product differentiation, system operation and integrated resource planning [6,9–48]. Despite occasionally large price spikes, wholesale energy markets have insufficient incentive for generation investment, a problem remedied by capacity markets that can provide stable cash flows critical for financing new plant construction [49–54].

The second event is large-scale renewable energy development,
Motivated by the three transformative events’ empirics, this paper applies a regression-based approach to analyze the newly available market data from the California Independent System Operator (CAISO). Besides data availability, California is chosen herein because of the state’s salient features of restructured electricity markets, sheer size, fuel diversity, aggressive RPS, and leadership in combatting global warming. This combination of features makes our California-based empirical findings interesting not only to academic researchers and industry practitioners, but also relevant for public policy decision making for a clean and sustainable electricity future.

Generalizing the regression specifications in [45,46,78–84,89], our proposed approach is applicable to other jurisdictions with similar data availability when implementing a C&T program (e.g., Alberta and Ontario in Canada; the Pacific Northwest, Texas, PJM, New England and New York in the U.S.; Denmark, Germany and Spain in Europe; Australia and New Zealand). It can also be used to analyze the market data that will become available in a country like China that continues its electricity market restructuring, has large-scale renewable energy development, and has implemented carbon trading [113–124].

Our paper answers three research questions of substantive policy relevance:

(1) Do the CAISO’s day-ahead market (DAM) prices contain a CO2 premium that has distributional impacts on energy consumers? If the premium is found to mainly exist in the daytime hours, it has bigger bill impacts on electricity consumers with relatively more daytime consumption. The same premium is a subsidy to existing CO2 emitters that receive the C&T program’s allocation of free allowances.

(2) What is the extent of the DAM prices’ pass-through of natural-gas-fired generation’s marginal cost of CO2 emissions? In principle, this marginal cost can be calculated as the product of the CO2 price determined by C&T, CO2 emissions from burning natural gas, and the marginal generation unit’s heat rate. An incomplete pass-through reveals a limited incorporation of CO2 emissions’ cost in producers’ bid curves. An excessive pass-through reflects a market price markup beyond the marginal CO2 cost, signaling generators’ exercise of their market power. Either outcome poses a regulatory challenge in the quest for a transparent and competitive electricity market.

(3) Does the extent of pass-through vary by time-of-day (TOD) period? One may conjecture that the DAM price’s pass-through should be relatively low for the hours of 00:00–06:00 when the system’s dispatched generation units in real time are mostly CO2-free (e.g., nuclear or wind). While intuitive, this conjecture ignores the CAISO’s anticipated need for natural-gas fired generation units with fast ramp rates to stand ready to provide reliability support in those hours.

To answer above questions, we estimate the empirical relationship between the CAISO’s location-specific DAM prices by TOD period and their fundamental drivers, which are the day-ahead forecasts of the CO2 price, the natural gas price, and the state’s system demands, solar and wind generation, nuclear capacities available, and hydro conditions. Not attempted for other jurisdictions, this comprehensive estimation is made possible by the CAISO’s rich daily market data for the 65-month period of 01/01/2011 to 05/31/2016 that covers 24 pre-C&T months and 41 post-C&T months.

We report two key findings. First, the CAISO’s DAM prices contain a CO2 premium that tracks the day-ahead forecast of the CO2 price. This finding prevails in the six TOD periods defined in Section 2, supporting the hypothesis of a 100% CO2 cost pass-through in a competitive wholesale electricity market with price-insensitive demands. Second, the CAISO’s DAM prices tend to decline with the day-ahead forecasts of renewable generation and nuclear capacity available but increase with those of the natural gas price and market demands. These estimated
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات