Land expropriation compensation among multiple stakeholders in a mining area: Explaining “skeleton house” compensation

Yingui Caoa,c,*, Martin Dallimerb, Lindsay C. Stringerb, Zhongke Baib,c,*, Yim Ling Siub

a School of Land Science and Technology, China University of Geosciences, Beijing 100083, China
b School of Earth \& Environment, University of Leeds, Leeds LS2 9JT, UK
c Key Lab of Land Consolidation, Ministry of Land and Resources of the PRC, Beijing 100035, China

\textbf{A B S T R A C T}

House demolition compensation in mining areas in China is determined by house size. This has led farmers to engage in “skeleton house” construction, namely, building simple structures that can increase the compensation obtained following land expropriation. While compensation standards and social security for land-expropriated farmers has received some research attention, investigations are yet to consider this challenge from different stakeholder perspectives. Clearly identifying the interests and interactive relationships of each group offers potential to deliver positive outcomes for all stakeholders and for the environment. This paper targets this gap using document analysis alongside semi-structured interviews with the Pingshou China Coal Corporation (PCCC), Pinglu District Government (PDG) and land-expropriated farmers in Shanxi Province in Northwest China, identifying reasons for and potential solutions to, the phenomenon of skeleton house construction. Novel application of the DPSIR (driving forces-pressures-statuses-impacts-responses) framework as a structuring tool for our analysis provides important insight into how the emerging situation has arisen and helps to identify potential countermeasures. There are many differences among the perspectives of the three stakeholder groups, and all are responsible for the phenomenon of skeleton houses. PCCC should follow different production routes to reduce their costs and the impacts on farmers. District Government should shift from a coping position (dealing with negative impacts from the coal industry) towards actively shaping coal industry development, thus reducing its negative impacts on wider society. Land-expropriated farmers should actively participate in meaningful discussions to assist PCCC and PDG to make reasonable and considerate compensation standards and social security policies.

1. Introduction

Land expropriation has led to concerns about adverse impacts on populations whose lands are lost (Mahalingam and Vyas, 2011; Ty et al., 2013). While much research has focused on issues concerning compensation for land-expropriated people, few researchers have examined the perspectives of the different stakeholders involved in the land acquisition and compensation process. This paper addresses this gap through focus on land expropriated for mining by central government mining company in China.

What is considered adequate compensation for those who have their land expropriated differs markedly between countries, and between developed and developing countries. For instance, people in Bangladesh face severely diminished and highly uncertain livelihoods as a result of land expropriation (Feldman and Geisler, 2012). Pakistan adopts fixed rates of compensation in order to prevent speculation through which land-expropriated people acquire more land in order to get more compensation (Hull, 2008). The land acquisition process in India is neither consultative nor transparent, and compensation, resettlement and rehabilitation packages offered to former landowners are often outdated, inadequate or based on artificially low land values and are keenly contested (Mahalingam and Vyas, 2011). There is a big gap between policy and practice of compensation and resettlement policy in Vietnam (Dao, 2010), with procedures followed inadequately and little attention to due process. The law in Malaysia requires the state to pay adequate compensation, however, this is not defined (Alias and Daud, 2015). Together, these examples from Asia show a wide variety of contentious issues surrounding the reasonable payment of compensation.

Laws and policies are adhered to more strictly in the developed world. For example, in the United States, the market value of the subject property is generally held as just compensation for the dispossessed...
owner (Eaton, 1995; Sun, 2013). In the UK, compensation is based on the principle of value to the owner, comprising the market value together with other losses suffered by the claimant (Denver-Green, 1994; DCLG, 2010). Other developed countries follow the “land for land” compensation method, where, land is given to the land-losers so they can continue with previous agricultural activities (Chaudhry, 2011).

Current compensation practices in China differ from those in other countries because of the forms of land ownership and the political-economic structure (Zhang and Qiu, 2013; Sun, 2013). In China, the state (or local government) pays farmers a fee which takes four elements into account: (1) compensation for the land, (2) resettlement allowance for displaced people, (3) compensation for ground attachments, and (4) compensation for lost or un-harvested crops (Lin and Ho, 2005). A multiple output method has been adopted to calculate compensation, considering the value of the land’s average output over the previous three years (Sun, 2013). The total compensation payable cannot be higher than 30 times the value of the land’s average output over the previous three years (Tan et al., 2009).

When provided, compensation is usually monetary and generally considered insufficient (Bao and Peng, 2016). Income (to the local governments) from leasing land to developers is substantially more than the compensation for the expropriation, and the land-expropriated farmers do not benefit from this value gap (Du et al., 2016), partly because they lack the rights to challenge the amounts they receive (Hui et al., 2013).

The impact on the farmers themselves is multifaceted. Following the loss of their land, without the security provided through the ownership of cultivated land, land-expropriated farmers who are moved into cities both encounter financial difficulties and lack the same rights as other citizens who have a longer history of residence in an urban area. They are therefore marginalized in terms of employment opportunities and social security (Hui et al., 2013), with the literature suggesting that land-expropriated farmers are more likely to be surviving on low income and unemployed (Gan and Sun, 2015). Land-expropriated farmers become vulnerable because compensation standards do not match their losses and social security for their future livelihoods are inadequate (Sargeson, 2013). This causes discontentment among land-expropriated farmers, who resist using violence and appeals (Sargeson, 2013; Lian et al., 2016).

Moreover, in China, there is no set regulation for compensation related to the demolition of houses in rural areas (Table 1). Only some local governments pay this type of compensation, leading to confusion amongst both home owners and those liable to pay compensation (Li, 2015). Although research has supported the idea of compensation standards being legally established (Lu, 2015; Liu, 2015), there remain major differences in the amounts of money actually paid, depending on interpretation of the policy by local government officials and whether houses are being demolished on state-or collective-owned land (Liu, 2015). In China’s urban areas, the house compensation value can be determined by the market price and assessed by authorized agencies according to The Legislation of House Expropriation and Compensation on State Owned Land (2011) (Table 1). In mining areas, which are mainly rural, compensation principles and standards are generally decided through negotiation between mining enterprises and farmers due to the absence of legislation or compensation standards (Li, 2014; Wang, 2016).

Comparing China with other countries (Table 1), similarities include, firstly, that legally constructed houses which were built before land expropriation became public knowledge, are compensated-this applies to skeleton houses too. Secondly, the compensation principles and standards in other countries are legislated at the national level, such as in Vietnam, the UK and the USA, and the house compensation value is determined by the market price or the equivalent reinstatement value. However, national-level legislation in China indicates that only houses on state-owned land can be compensated according to the market price. Although there are concrete and specific compensation principles and standards for house demolition and compensation on collective owned land in some cities, compensation principles and standards in most cities are still decided by discussion and negotiation between those demanding land and farmers (Wang, 2016).

Skeleton houses (the minimum infrastructure for a particular building to be considered eligible for compensation, developed as an explicit tactic to increase the amount of compensation that residents and land-expropriated farmers receive) are also subject to demolition and can receive compensation. Mining areas are characterized by large numbers of skeleton houses, especially coal mining areas managed by central government enterprises. Although skeleton houses also exist in public industries and urban construction industries, they are quickly dismantled with compensation. Table 1 indicates that one reason for such skeleton house construction may be related to the absence of laws and legislation, not least because there are known differences in how land expropriation in mining areas and house demolition for urban construction are managed (Table 2). Nevertheless, few studies have attempted to consider the interests and interactive relationships among multiple stakeholders (e.g. central government mining enterprises, local governments and land-expropriated farmers) and how these shape skeleton house construction. Existing research focuses largely on the interests of land-expropriated farmers, standards of land expropriation, and the social securities in place. This paper targets this gap using the DPSIR framework as an analytical tool, to investigate why skeleton house construction is taking place, identifying stakeholders’ understandings of current trends in compensation, and how the problem could be addressed.

2. Methodology

2.1. Study area

Pinglu District, lies in the west of Shuozhou City, and Shuozhou City lies in the northwest of Shanxi Province, China in the semi-arid, warm temperate, continental monsoon climate zone (Table 3) and is a mixed mining-rural-settlement area (Cao and Bai, 2015). The area of Pinglu District is 2314 km² and constitutes 21.6% of the Shuozhou City. The study area is a part of Pinglu District, and it includes Jingping Town, Xiangyangbao Township, Baitang Township, Yuling Township, Taocun Township and Xiamiangao Township. The majority (90%) of coal production in the area comes from three surface (Antaiba, Anjialing, Donglutian) and three underground (No.1, No.2, No.3) mines operated by Pingshuo China Coal Corporation (PCCC), with the remainder from smaller, local underground mines. The mined area accounts for 70% of the study area (517 km²). The study area offers a useful case as it faces land expropriation issues similar to those experienced in other regions of China in recent years.

2.2. DPSIR model

The DPSIR (Driving forces, Pressures, Statuses, Impacts and Responses) framework is a conceptual model for understanding complex interactions between human and environmental systems (Svarstad et al., 2008). Increasingly, researchers use the framework in environmental management, to assess and monitor environmental trends (Zhou et al., 2015). DPSIR’s focus on linkages encourages trans-disciplinary research, connects policy makers and stakeholders, and allows the framework to act as a heuristic tool for complex systems analysis. However, it has been critiqued for encompassing biophysical factors or socio-cultural dimensions rather than fully integrating both types of information. Further, it cannot quantitatively consider the dynamics of the system it models, handle cause-consequence relationships, suggests linear unidirectional causal chains, and ignores key non-human drivers of environmental change (Rekolainen et al., 2003; Lewison et al., 2016). Despite these issues, it provides a useful framework for analysis in this research. We apply it in a novel situation not only to reveal the
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان برداشت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات