Performance analysis of solar energy integrated with natural-gas-to-methanol process

Sheng Yanga, Zhiqiang Liua, Zhiyong Tangb, Yifan Wanga, Qianqian Chenc, Yuhan Sunb,d,*

* Corresponding authors at: Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai 201210, People’s Republic of China.

Keywords:
- Methanol
- Natural-gas-to-methanol
- Performance analysis
- GHG emission

1. Introduction

Methanol is an important platform chemical [1]. There are hundreds of chemical products, which can be synthesized from methanol. The current annual methanol production capacity exceeds 31 million tons in China [2]. From 2003 to 2014, the methanol production has increased significantly. Methanol production in 2014 was nearly 10 times higher than that in 2003, which is shown in Fig. 1 [3]. At the same time, consumption of methanol reached 33 million tons in 2014, accounting for nearly 40% of the global total demand of 65 million tons. It is estimated that annual methanol production capacity will exceed 66 million tons of methanol by 2020 in China [4].

Natural-gas-to-methanol is a way to produce methanol [6]. Most of the methanol production facilities outside China are using natural gas as raw material. The methanol production using natural gas or low carbon hydrocarbon takes about 70% of the total methanol production capacity [7]. The natural gas route methanol plant is mainly distributed in oil fields or natural gas producing areas in China, such as the Northwest Sichuan methanol plant, Golmud Vico methanol plant, Daqing methanol plant, Changle methanol plant, CNOOC 600 thousand tons of methanol, etc. A few plants use natural gas from the west east gas pipeline to produce methanol, for example, CNOOC, tyche chemical 200 thousand tons methanol plant and Henan Zhuangdian 300 thousand tons methanol device [8].

Methanol production using natural gas as raw material has short process route and well developed equipment and technology [6]. However, natural gas reserves are not large in China. There is still a big gap in the supply of natural gas market [8]. The cost of natural gas routes is relatively high [9]. Many researchers are constantly committed to the study of various NGTM processes [10,11]. Renewable energy integration is one of the methods [12,13]. Solar energy is one kind of renewable energy. Zeng et al. experimentally tested the performance of solar energy integration to drive biomass pyrolysis [14]. Soares et al. developed a system that integrated solar energy to drive an Organic Rankine Cycle, the system annual yield is significantly increased 3.4–9.6% [15]. Tanaka et al. injected solar energy into the heat...
moved under the catalyst of iron oxide and organic sulfur is moved under the catalyst of activated carbon. Hydrogen reacts with the sulfurs under the action of ZnO catalyst. After the desulfurization reactions, the total sulfur of natural gas is less than 30 ppb (vol%). For modeling of sulfur removal unit, desulfurization reactor is modeled by using the Sep model.

2.1.3. Natural gas reforming

Natural gas reforming is a major technical route for large-scale synthesis of syngas or hydrogen. Reforming methods include steam methane reforming (SMR), dry methane reforming (DMR), methane partial oxidation (MPO), autothermal reforming (ATR), etc [23–25]. The fundamental reactions of the reforming methods are shown in Eqs. (1)–(4).

SMR: \(\text{CH}_4 + \text{H}_2 \rightarrow \text{CO} + \text{H}_2 \quad \Delta \text{H} = +247.3 \text{ kJ/mol} \) \hspace{1cm} (1)

DMR: \(\text{CH}_4 + \text{CO}_2 \rightarrow 2\text{CO} + \text{H}_2 \Delta \text{H} = +206.3 \text{ kJ/mol} \) \hspace{1cm} (2)

MPO: \(\text{CH}_4 + 0.5\text{O}_2 \rightarrow \text{CO} + \text{H}_2 \quad \Delta \text{H} = -35.6 \text{ kJ/mol} \) \hspace{1cm} (3)

ATR: \(\text{CH}_4 + \text{H}_2 \rightarrow \text{CO} + \text{H}_2 \quad \Delta \text{H} = +247.3 \text{ kJ/mol} \)

NGTM includes primary reformer and autothermal reformer. SMR is employed in primary reformer. ATR is employed in autothermal reformer.

2.1.4. Methanol synthesis

Low pressure method is explored in this paper, which includes Davy method, Lurgi method and Topsøe method [26]. The former two are better developed techniques. The advantages of Davy method are that the structure of the synthesis tower is simple and the equipment is easy to be manufactured. In contrast, the synthesis tower of Lurgi method is more complex [27]. For the low one-way conversion rate, Davy methanol synthesis process has to increase circulation of the unconverted gas, in order to reduce the discharge of purge gas. Conversely, the one-way conversion rate of Lurgi method is much higher, leading to circulation rate less than half of Davy method. Thus, the power consumption, related equipment size, and one-time investment of Davy methanol synthesis are larger than those of Lurgi methanol synthesis [28]. The upper part of Topsøe methanol synthesis tower is equipped with a sophisticated mechanism to prevent synthesis gas axial flow due to catalyst shrinkage, which results in low efficiency of catalyst [29]. Lurgi methanol synthesis process was selected in this work.

In general, there are several major reversible reactions in the methanol synthesis reactor. Cu-Zn-Al catalyst was used for this reaction with its suitable temperature 240 °C and pressure 8.2 MPa [30,31]. The main reactions are shown in Eqs. (5) and (6).

\(\text{CO} + 2\text{H}_2 \rightarrow \text{CH}_3\text{OH} \quad \Delta \text{H} = -90.84 \text{ kJ/mol} \) \hspace{1cm} (5)

\(\text{CO}_2 + \text{H}_2 \rightarrow \text{CH}_3\text{OH} + \text{H}_2\text{O} \quad \Delta \text{H} = -49.57 \text{ kJ/mol} \) \hspace{1cm} (6)

The syngas is fed to methanol synthesis with the ratio H/C of about 2. Following the synthesis reaction, the unreacted syngas is separated out from the chemical products and recycled back to the methanol synthesis to increase the methanol production. After the synthesis reaction, methanol production is fed to separation columns for methanol purification. In this study, methanol purification is adopted in the three column distillation process.

2.2. Flowsheet simulation

NGTM process discussed in this study was simulated by the flow sheet simulation software Aspen Plus [9,31,32]. Peng-Rob equation of state (EOS) was selected as the thermodynamic method [30]. Natural gas of 53,000 Nm³/h was selected as the feedstock with its heat value of 35.1 MJ/Nm³. The flow rate was determined to match an annual
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات