
A multi-agent simulation framework on small Hadoop cluster

Prashant Sethia, Kamalakar Karlapalem �

Centre for Data Engineering, International Institute of Information Technology, Hyderabad, India

a r t i c l e i n f o

Available online 23 July 2011

Keywords:

Multi-agent simulation

Design

Experimentation

Reliability

Cloud computing

Fault-tolerance

Failure-resilience

Agent architecture

a b s t r a c t

In this paper, we explore the benefits and possibilities about the implementation of multi-agents

simulation framework on a Hadoop cloud. Scalability, fault-tolerance and failure-recovery have always

been a challenge for a distributed systems application developer. The highly efficient fault tolerant

nature of Hadoop, flexibility to include more systems on the fly, efficient load balancing and the

platform-independent Java are useful features for development of any distributed simulation. In this

paper, we propose a framework for agent simulation environment built on Hadoop cloud. Specifically,

we show how agents are represented, how agents do their computation and communication, and how

agents are mapped to datanodes. Further, we demonstrate that even if some of the systems fail in the

distributed setup, Hadoop automatically rebalances the work load on remaining systems and the

simulation continues. We present some performance results on this environment for a few example

scenarios.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-agent simulation is an important research field in today’s
scenario and analyzing emergent behaviors in such simulations
largely depend on the number of agents involved. More the
number of agents involved with detailing of agent decision making
and communication, closer is the result obtained to the real world.
A classic example would be simulating traffic of a city with
millions of human agents and thousands of commuting agents
like trains, buses. Due to large number of agents, time taken for
such simulations becomes large and so we resort to a distributed
computing solution.

In simulations involving millions of agents, the running time for
each simulation cycle can be of several seconds or even minutes;
and when run for a large number of cycles, the total simulation time
can be of several hours or days. If some of the machines fail during
the run-time, then the entire simulation needs to be restarted. If we
can somehow dynamically re-balance the work load on the remain-
ing number of machines and maintain logs of the simulation
progress, we can continue the simulation from the point of failure.
So, we require a fault-tolerant and failure-resilient framework which
is also easily extensible to run on a large number of processors and
agents.

Hadoop (http://wiki.apache.org/hadoop) is a promising option
in this respect. It takes care of non-functional requirements, like

scalability, fault-tolerance, load balancing, and the framework
developer only needs to develop a layer for agent-based simula-
tion on top of it. If some systems in the distributed environment
fail, the simulation does not stop. Hadoop automatically reba-
lances the work load on remaining systems and continues to run
the simulation. Further, Hadoop facilitates dynamic addition of
new nodes in a running simulation. In this paper, we present a
design of an agent-based simulation framework implemented on
Hadoop cloud. Being developed on top of Hadoop, it inherits
Hadoop’s afore-mentioned advantages.

1.1. Related work

Developing tools for multi-agent simulations has always been
an active area of research (Railsback et al., 2006), with emphasis
being laid on different aspects – architecture, scalability, effi-
ciency, fault-tolerance and effectiveness of the system. A number
of frameworks have been developed such as Netlogo (Tisue,
2004), ZASE (Yamamoto et al., 2007), DMASF (Rao et al., 2007)
and MASON (Luke et al., 2005).

Tisue (2004) introduced a novel programming model for imple-
menting agent-based simulations, which eased the development of
complex agent-models and scenarios. It manages all the agents in a
single thread of execution, switching execution between different
agents, deterministically and not randomly, after each agent has
done some minimal amount of work (simulated parallelism). The
simulated parallelism provides deterministic reproducibility of the
agent-based simulation every time it is run with same seed for
random number generator; which was one of the implementation
goals of Netlogo. Further, a visualization module provides 2D/3D

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/engappai

Engineering Applications of Artificial Intelligence

0952-1976/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.engappai.2011.06.009

� Corresponding author.

E-mail addresses: prashant.sethia@research.iiit.ac.in (P. Sethia),

kamal@iiit.ac.in (K. Karlapalem).

Engineering Applications of Artificial Intelligence 24 (2011) 1120–1127

www.elsevier.com/locate/engappai
dx.doi.org/10.1016/j.engappai.2011.06.009
mailto:prashant.sethia@research.iiit.ac.in
mailto:kamal@iiit.ac.in
dx.doi.org/10.1016/j.engappai.2011.06.009


visuals of the ongoing simulation. However, Netlogo is not able to
distribute the computation on a cluster of computers and hence is
not scalable.

MASON (Luke et al., 2005), developed in Java, provides a
platform for running massive simulations over a cluster of computers.
It has a layered architecture with separate layers for agent-modeling
and visualization, which makes decoupling the visualization part
easier. It has the capability to support millions of agents (without
visualization). Checkpoints of agent data are created on disk for
offline visualization.

ZASE (Yamamoto et al., 2007) (developed in Java) is another
scalable platform for running billions of agents. It divides the
simulation into several smaller agent-runtimes, with each
runtime controlling hundreds of thousands of agents and running
on a separate machine. It keeps all agents in main memory
without the need to access the disk. A thread-pool architecture
is followed with several agents sharing a single thread of
execution.

DMASF (Rao et al., 2007) (developed in Python) has an
architecture similar to MASON and ZASE. Like ZASE, it divides
simulation into several smaller runtimes executing on different
computers and same thread is shared by several agents. But it
uses MySQL database for providing scalability with the help of
secondary storage rather than getting bounded by the limited
main memory. Similar to MASON, it has a modular architecture
separating agent-modeling and visualization. Further, it dynami-
cally balances the agent execution load on different machines.

However, the ability to handle hardware failures is lacking in
all the three (MASON, ZASE, DMASF). If some of the systems using
these frameworks fail during the simulation run, then the simula-
tion needs to be restarted from the beginning.

SWARM (Minar et al., 1996), RePast (Collier, 2001) and JAS
(Sonnessa, 2003) are some of the other widely used frameworks
for studying emergent agent-behaviors through agent-based social
simulations. However, they lack the capability to manage more
than one system and hence are not scalable.

1.2. Contribution and organization

Our proposed framework developed on Hadoop provides three
major advances to the current state of art: (i) Dynamic addition of
new computing nodes while the simulation is running; (ii) Hand-
ling node failures without affecting the ongoing simulation by
redistributing the failed tasks on working systems; (iii) Allowing
simulations to run on machines running different operating
systems. Further, the framework incorporates several optimization
techniques: (i) clustering of frequently communicating agents
(for reducing inter-processor communication); (ii) caching of
results (for improving performance) that are run on Hadoop cloud.

Section 2 presents the architecture of Hadoop. Section 3 gives
the framework architecture built on top of Hadoop. Issues faced
in developing the framework and our proposed solutions for
overcoming them are presented in Section 4. In Section 5, we
present some performance results for few example scenarios.
Finally, in Section 7 we present some conclusions.

2. Hadoop architecture and map-reduce model

Hadoop (http://wiki.apache.org/hadoop) is an Apache project
which develops open-source software for reliable and scalable
distributed computing. It maintains a distributed file system,
Hadoop Distributed File System (HDFS) (http://hadoop.apache.org/
hdfs/) for data storage and processing. Hadoop uses classic Map-

Reduce programming paradigm to process data. This paradigm
easily fits a large number of problems (http://code.google.com/

edu/parallel/mapreduce-tutorial.html). Hadoop consists of a single
master system (known as namenode) along with several slave
systems (known as datanodes). For failure resilience purposes, it
has a secondary namenode which replicates the data of namenode at
regular intervals.

2.1. Hadoop distributed file system (HDFS)

HDFS (http://hadoop.apache.org/hdfs/) is a block-structured
file system: individual files are broken into blocks of a fixed size
(default size is 64 MB), which are distributed across a cluster of
one or more machines (datanodes); thus all the blocks of a single
file may not be stored on the same machine. Thus, access to a file
may require access to multiple machines, in which case a file
could be rendered unavailable by the loss of any one of those
machines. HDFS solves this problem by replicating each block
across a number of machines (three, by default). The metadata
information consists of division of the files into blocks and the
distribution of these blocks on different datanodes. This metadata
information is stored on namenode.

2.2. Map-reduce paradigm

The MapReduce paradigm transforms a list of (key, value) pairs
into a list of values. The transformation is done using two
functions: Map and Reduce. Map function takes an input (key1,

value1) pair and produces a set of intermediate (key2, value2)

pairs. The Map output can have multiple entries with the same
key2. The MapReduce framework sorts the Map output according to
intermediate key2 and groups together all intermediate value2’s
associated with the same intermediate key2. The Reduce function
accepts an intermediate key2 and the set of corresponding value2’s
for that key2, and produces one or more output value3’s.

(i) map(key1,value1) -4 list /(key2,value2)S
(ii) reduce(key2, list /value2 S) -4 list /value3 S

The intermediate values are supplied to the Reduce function via an
iterator (http://download.oracle.com/javase/6/docs/api/java/util/
Iterator.html). This allows handling lists of values that are too
large to fit in memory. The MapReduce framework calls the Reduce

function once for each unique key in sorted order. Due to this the
final output list generated by the framework is sorted according
to the key of Reduce function.

For example, consider the standard problem of counting the
number of occurrences of each word in a large collection of
documents (Dean and Ghemawat, 2004) (Table 1). This problem
can be solved by using the Map and Reduce functions. The Map

function emits each word along with an associated count of
occurrences (just ‘1’ in this simple example). The Reduce function
sums together all counts emitted for a particular word.

Table 1
Map-reduce solution for word-count as it occurs in Dean and Ghemawat (2004).

map(String key, String value):

// key: document name

// value: document contents

for each word w in value:

EmitIntermediate(w, ‘‘1’’);

reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result¼0;

for each v in values:

result þ¼ ParseInt(v);

Emit(AsString(result));

P. Sethia, K. Karlapalem / Engineering Applications of Artificial Intelligence 24 (2011) 1120–1127 1121



http://isiarticles.com/article/11434

