A case study about the interplay between language control and cognitive abilities in bilingual differential aphasia: Behavioral and brain correlates

Lize Van der Lindena,\ast, Laurence Dricotb, Miet De Letterc, Wouter Duyckd, Marie-Pierre de Partzb, Adrian Ivanoiub,\ast, Arnaud Szmaleca,b,d

a Psychological Sciences Research Institute, Université catholique de Louvain, Place Cardinal Mercier 10, Louvain-la-Neuve, Belgium
b Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate 10, Brussels, Belgium
c Department of Speech, Language, and Hearing Sciences, Ghent University, De Pintelaan 185, Ghent, Belgium
d Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, Ghent, Belgium
e Neurology Department, Saint Luc University Hospital, Avenue Hippocrate 10, Brussels, Belgium

\textbf{ARTICLE INFO}

\textbf{Keywords:}
Differential aphasia
Non-linguistic control
Inhibition
Bilingualism
Language control
Functional connectivity

\textbf{ABSTRACT}

The current study examines the hypothesis that differential aphasia may be due to a problem with language control rather than with language-specific impairment and how this is related to non-linguistic cognitive control abilities. To this end, we report a case study of an L2 dominant French-English bilingual aphasia patient with larger impairments in French than in English. We assessed cross-language interactions using cognates in three lexical decision (LD) tasks, and non-linguistic cognitive control with a flanker task. We also examined functional connectivity between brain regions crucial for language control and language processing. We observed the preservation of cognate effects in a generalized lexical decision task requiring little language control, which indicates intact functionality (and cross-lingual interactivity) of lexical representations. On the other hand, we found diminished linguistic as well as non-linguistic control abilities, suggesting a domain general control impairment. Resting-state functional Magnetic Resonance Imaging (rs-fMRI) analysis revealed altered connectivity between the patient's language control and processing network, consistent with the behavioral data. Altogether, these results are in line with the hypothesis that differential aphasia may originate from general cognitive control difficulties.

1. Introduction

In these times of globalization and cultural exchange, the prevalence of bilingualism is constantly increasing and today more than half the world's population is considered to be bilingual (Grosjean, 2010). It is well documented that bilinguals experience cross-language activation when conducting a task that in essence only requires one language (Colomé, 2001; Costa & Caramazza, 1999; Costa & Santesteban, 2004; Duyck, Van Assche, Drieger, & Hartsuiker, 2007; Kaushanskaya & Marian, 2007; Meuter & Allport, 1999; Van Assche, Duyck, Hartsuiker, & Diependaele, 2009). Most of these studies have included experiments using cognates. Cognates are
words that share their meaning and their orthography and/or phonology between two different languages (e.g., the Dutch-English example film-film (shared orthography and phonology) or appel-apple (shared phonology and large orthographic overlap)). Typically, bilinguals are faster in recognizing cognates compared to noncognates, a phenomenon known as the cognate facilitation effect (Duyck et al., 2007; Van Hell & Dijkstra, 2002), which reveals activation of multiple languages during word recognition.

1.1. Consequences of bilingualism for the cognitive system

Bilingualism, and the resulting continuous activation of multiple languages, has positive consequences for the cognitive system, above and beyond the advantage of speaking more than one language (e.g., Bialystok, 2010, 2011; Bialystok & Barac, 2012; Bialystok, Craik, Klein, & Viswanathan, 2004; Bialystok, Craik, & Luk, 2008; for review see; Bialystok, Craik, Green, & Gollan, 2009). According to the inhibitory control model (Green, 1998), this bilingual advantage is a consequence of the continuous need to inhibit the (lexical) activation of the non-target language while producing or comprehending speech in the target language. How this language control is accomplished, however, is still under debate (Costa & Santesteban, 2004; Costa, Santesteban, & Ivanova, 2006; Dijkstra & Van Heuven, 2002; Gray & Kiran, 2016; Green, 1998; Hermans, Bongaerts, De Bot, & Schreuder, 1998). It is still not clear whether the mechanism that controls this cross-language activation is specific to the language domain or whether it extends to the entire cognitive system. Bilingualism has been shown to increase language abilities, like novel word learning (Kaushanskaya & Marian, 2009; Papagno & Vallar, 1995), but many researchers observed an advantage outside the language domain for bilinguals over monolinguals as well. For instance, bilingualism has been found to improve non-verbal cognitive control skills (e.g., Bialystok, 2010, 2011; Bialystok et al., 2004; Bialystok et al., 2008; Costa, Hernández, Costa-Fadella, & Sebastián-Gallés, 2009; Costa, Hernández, & Sebastián-Gallés, 2008) and to protect against cognitive decline by aging or Alzheimer's dementia (Bialystok et al., 2004; Craik, Bialystok, & Freedman, 2010; Woumans et al., 2015). Although some authors contest the bilingual advantage (e.g., Paap & Greenberg, 2013; Paap & Savi, 2014; Paap, Johnson, & Savi, 2015), perhaps the strongest evidence available for a non-linguistic control advantage is the meta-analysis of de Bruin, Treccani, and Della Sala (2015), who reported a modestly-sized, but significant difference between monolinguals and bilinguals. The observation of a bilingual advantage suggests that linguistic and non-linguistic control abilities are linked to an at least partly shared system, although some researchers also argued for two distinct control processes (Calabria, Branzi, Manre, Hernández, & Costa, 2015; Calabria, Hernández, Branzi, & Costa, 2012; Magee, Khatib, Mouton, Spiers, & Ammoni, 2012; Weissberger, Wierenga, Bondi, & Gollan, 2012). Altogether, these findings seem to suggest that language control and non-linguistic cognitive control are not fully independent, but it is still a matter of debate whether they refer to a single, domain-general control mechanism or whether they can be considered as two domain-specific mechanisms.

1.2. The control hypothesis in differential aphasia

In the present study, we aimed to investigate the above concepts of language control and non-linguistic control in a bilingual patient with differential aphasia. Aphasia is defined as a disturbance in understanding, formulating or using verbal messages and it is caused by a brain dysfunction in language-related brain areas (Damasio, 1992). Until recently, most research on aphasia focused on the representation and use of one single language. Also in neuropsychological or logopaedic practice, knowledge or impairments in other known languages are often not considered, neither in diagnostics nor in therapy. However, as more and more people nowadays are bilingual, also the number of bilinguals suffering from aphasia is growing (Faroqi-Shah, Frymark, Mullen, & Wang, 2010). Research conducted so far showed that bilingual patients with aphasia do not always recover their native (L1) and second language (L2) to the same degree (Giussani, Roux, Lubrano, Gaini, & Bello, 2007), which reveals activation of multiple languages during word recognition.

According to the inhibitory control model (Green, 1998), this bilingual advantage is a consequence of the continuous need to inhibit the (lexical) activation of the non-target language while producing or comprehending speech in the target language. How this language control is accomplished, however, is still under debate (Costa & Santesteban, 2004; Costa, Santesteban, & Ivanova, 2006; Dijkstra & Van Heuven, 2002; Gray & Kiran, 2016; Green, 1998; Hermans, Bongaerts, De Bot, & Schreuder, 1998). It is still not clear whether the mechanism that controls this cross-language activation is specific to the language domain or whether it extends to the entire cognitive system. Bilingualism has been shown to increase language abilities, like novel word learning (Kaushanskaya & Marian, 2009; Papagno & Vallar, 1995), but many researchers observed an advantage outside the language domain for bilinguals over monolinguals as well. For instance, bilingualism has been found to improve non-verbal cognitive control skills (e.g., Bialystok, 2010, 2011; Bialystok et al., 2004; Bialystok et al., 2008; Costa, Hernández, Costa-Fadella, & Sebastián-Gallés, 2009; Costa, Hernández, & Sebastián-Gallés, 2008) and to protect against cognitive decline by aging or Alzheimer's dementia (Bialystok et al., 2004; Craik, Bialystok, & Freedman, 2010; Woumans et al., 2015). Although some authors contest the bilingual advantage (e.g., Paap & Greenberg, 2013; Paap & Savi, 2014; Paap, Johnson, & Savi, 2015), perhaps the strongest evidence available for a non-linguistic control advantage is the meta-analysis of de Bruin, Treccani, and Della Sala (2015), who reported a modestly-sized, but significant difference between monolinguals and bilinguals. The observation of a bilingual advantage suggests that linguistic and non-linguistic control abilities are linked to an at least partly shared system, although some researchers also argued for two distinct control processes (Calabria, Branzi, Manre, Hernández, & Costa, 2015; Calabria, Hernández, Branzi, & Costa, 2012; Magee, Khatib, Mouton, Spiers, & Ammoni, 2012; Weissberger, Wierenga, Bondi, & Gollan, 2012). Altogether, these findings seem to suggest that language control and non-linguistic cognitive control are not fully independent, but it is still a matter of debate whether they refer to a single, domain-general control mechanism or whether they can be considered as two domain-specific mechanisms.

1.2. The control hypothesis in differential aphasia

In the present study, we aimed to investigate the above concepts of language control and non-linguistic control in a bilingual patient with differential aphasia. Aphasia is defined as a disturbance in understanding, formulating or using verbal messages and it is caused by a brain dysfunction in language-related brain areas (Damasio, 1992). Until recently, most research on aphasia focused on the representation and use of one single language. Also in neuropsychological or logopaedic practice, knowledge or impairments in other known languages are often not considered, neither in diagnostics nor in therapy. However, as more and more people nowadays are bilingual, also the number of bilinguals suffering from aphasia is growing (Faroqi-Shah, Frymark, Mullen, & Wang, 2010). Research conducted so far showed that bilingual patients with aphasia do not always recover their native (L1) and second language (L2) to the same degree (Giussani, Roux, Lubrano, Gaini, & Bello, 2007) in the sense that di
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات