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Abstract

This paper presents a system simulation model of an oil-injected screw chiller. The refrigerant (shell and
tube) heat exchangers are modeled, using a three-zone approach, to study the effects of the operational

parameters on the fractional area allocated to each phase within the heat exchangers. All major compo-

nents of the system such as, an oil-injected screw compressor, a shell and tube condenser, a flooded

evaporator and a high side-float valve, are modeled in a modular format. The predicted results are validated

with experimental data collected from a multiple-chiller plant at a process industry. The results show that

the part-load ratio and the temperature of glycol-water entering the evaporator affect the system perfor-

mance significantly and have strong influence on the fractional areas allocated to each phase within the

condenser.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Industrial chillers that use shell and tube condensers and evaporators with refrigerant con-
densing and boiling outside the tube bundles respectively, are commonly used in process cooling
industries and air-conditioning applications. The steady state behaviour of these chillers has been
studied through modeling and experimental investigations [1,2,6–16]. The physical steady state
system models as proposed by Browne and Bansal [1,2] require both thermodynamic and
transport property data as well as equipment geometric parameters. The complicating factor in
refrigeration-type heat exchangers is that the refrigerant is not in two-phase over its full length
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Nomenclature

Symbols
A area (m2)
B parameter
COP coefficient of performance
cp specific heat (J kg�1 K�1)
d diameter (m)
dp=dz pressure gradient
f friction factor
F suppression factor
g gravitational acceleration (m s�2)
G mass flux (kgm�2 s�1)
h enthalpy, heat transfer coefficient (J kg�1, Wm�2 K�1)
k thermal conductivity (Wm�1 K�1)
K characteristic of expansion device
_m mass flow rate (kg s�1)
n power of friction factor
N vertical column rows
NTU number of transfer units
P pressure (Pa)
PLR part load ratio
Pr Prandtl number
DP pressure difference (Pa)
q0 heat flux (Wm�2)
_Q heat transfer rate (W)
R thermal resistance (m2 KW�1)
Re Reynolds number
Rwq power input per unit refrigeration capacity
S suppression factor
T temperature (�C)
DT temperature difference (K)
u velocity (m s�1)
U overall heat transfer coefficient (Wm�2 K�1)
m specific volume (m3 kg�1)
_W rate of work (W)
x vapour quality
Y Chisholm parameter

Greek symbols
a void fraction
b parameter
e effectiveness
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