Bioassay-guided isolation of saikosaponins with agonistic activity on 5-hydroxytryptamine 2C receptor from *Bupleurum chinense* and their potential use for the treatment of obesity

SUN Chang-Li¹,², GENG Chang-An¹, HUANG Xiao-Yan¹, MA Yun-Bao¹, ZHENG Xiao-Hong¹,², YANG Tong-Hua¹,², CHEN Xing-Long¹,², YIN Xiu-Juan¹,², ZHANG Xue-Mei¹, CHEN Ji-Jun¹*

¹ State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; ² University of Chinese Academy of Sciences, Beijing 100049, China

Available online 20 Jun., 2017

[ABSTRACT] 5-Hydroxytryptamine 2C (5-HT₂C) receptor is one of the major targets of anti-obesity agents, due to its role in regulation of appetite. In the present study, the 70% EtOH extract of the roots of *Bupleurum chinense* was revealed to have agonistic activity on 5-HT₂C receptor, and the subsequent bioassay-guided isolation led to identification of several saikosaponins as the active constituents with 5-HT₂C receptor agonistic activity *in vitro* and anti-obesity activity *in vivo*. The new compound, 22-oxosaikosaponin d (1), was determined by extensive spectroscopic analyses (HR-ESI-MS, IR, and 1D and 2D NMR). The primary structure-activity relationship study suggested that the intramolecular ether bond between C-13 and C-28 and the number of sugars at C-3 position were closely related to the 5-HT₂C receptor agonistic activity. Saikosaponin a (3), the main saponin in *B. chinense*, showed obviously agonistic activity on 5-HT₂C receptor with an EC₅₀ value of 21.08 ± 0.33 μmol L⁻¹ *in vitro* and could reduce food intake by 39.1% and 69.2%, and weight gain by 13.6% and 16.4%, respectively, at 3.0 and 6.0 mg kg⁻¹ *in vivo*. This investigation provided valuable information for the potential use of *B. chinense* as anti-obesity agent.

[KEY WORDS] *Bupleurum chinense*; 5-hydroxytryptamine 2C (5-HT₂C) receptor; Anti-obesity; Saikosaponins

[CLC Number] R284 **[Document code]** A **[Article ID]** 2095-6975(2017)06-0467-07

Introduction

Obesity as an increasingly chronic condition leads to high morbidity and mortality [¹]. The prevalence of serious health problems such as coronary heart disease, hypertension, stroke, diabetes, and infectious diseases is closely related to the severity of obesity [²-⁴]. The anti-obesity pharmacotherapy is often focused on neurotransmitter receptors, of which 5-hydroxytryptamine 2C (5-HT₂C) receptor appears to play the greatest role in the regulation of appetite [⁵-⁷]. Many synthesized compounds have been reported to have 5-HT₂C receptor agonistic activity and inhibitory effects on appetite [⁸-¹⁰]. To our best knowledge, natural anti-obesity compounds targeting 5-HT₂C receptor are rarely reported.

Bupleurum chinense, belonging to the genus *Bupleurum* of the family Umbelliferae, is a famous traditional Chinese medicine (TCM), which was originally documented in the oldest Chinese material medicinal monographs “Shennong’s Herbal”. The roots of *B. chinense*, recorded as “Chai-Hu” in every edition of “Chinese Pharmacopoeia”, have the action of dispelling exogenous evils, invigorating splenic yang, and are widely used to treat fever and hypochondriasis [¹¹]. Furthermore, *B. chinense* is prescribed in many ancient formulas (e.g., Xiao-Chai-Hu-Tang and Xiao-Yao-San) as the principle drugs for treating chronic hepatitis and depression [¹²-¹⁵]. Previously phytochemical research has suggested that saikosaponins, lignans, coumarins, flavonoids, polyacetylenes are the major chemical constituents of *B. chinense* with immunodulatory, anti-inflammatory, anti-ulcer, anti-oxidant, and hepatoprotective activities [¹⁶].
In this investigation, the 70% EtOH extract of the roots of *B. chinense* was initially revealed with agonistic activity on 5-HT_{2C} receptor, indicating the potential use for the treatment of obesity. In order to elucidate its anti-obesity activity and the main active compounds, bioassay-guided isolation led to the active fraction with significant anti-obesity activity *in vivo*, from which a series of saikosaponins with 5-HT_{2C} receptor agonistic activity were isolated. Saikosaponin a (3), as the main saponin, showed obvious 5-HT_{2C} agonistic activity with an EC₅₀ value of 21.08 ± 0.33 μmol·L⁻¹ *in vitro* and *in vivo* inhibitory effects on food intake at 3.0 and 6.0 mg·kg⁻¹ by 39.1% and 69.2%, and weight gain by 13.6% and 16.4%, respectively. 1

Material and Methods

General procedures

The high resolution electrospray ionization mass spectroscopy (HRESIMS) was performed on a UPLC-MS-IT-TOF apparatus (Shimadzu, Kyoto, Japan). The nuclear magnetic resonance (NMR) experiments were performed on AVANCE III-600 spectrometer (Bruker, Bremerhaven, Germany) with tetramethylsilane (TMS) as the internal standard. Column chromatography (CC) was performed on MCI-gel CHP20P (75–150 μm; Mitsubishi Chemical Co., Chigasaki, Japan), silica gel (200–300 mesh, Qingdao Marine Chemical Co., Qingdao, China), and RP-18 (40–63 μm, Merck, Shanghai, China). Thin layer chromatography (TLC) was performed on HSGF254 (0.2 mm, Qingdao Marine Chemical Co.) or RP-18 F₂₅₄ (0.25 mm, Merck). Fractions were monitored by TLC and the spots were visualized by heating silica gel plates sprayed with 10% H₂SO₄ in EtOH; Semipreparative Waters Alliance 2695 apparatus with an Agilent ZORBAX SB-C₁₈ (5 μm, 9.4 mm × 250 mm) column (Agilent, Torrance, CA, USA) was used for high performance liquid chromatography (HPLC) separation.

The 5-HT_{2C} agonistic assay *in vitro* was measured in HEK293 cell line (HD Biosciences Co. Ltd., Shanghai, China). Dulbecco’s modified Eagle’s media (DMEM), dialyzed fetal bovine serum (FBS), and 96-well plates used for cell culture were obtained from GIBCO, Shanghai, China. The cells were dyed by HDB Wash Free Fluo-8 Calcium Assay kit (HD Biosciences Co. Ltd., Shanghai, China) was used as positive control. Other reagents were of analytical grade and obtained from GIBCO (Shanghai, China).

The roots of *Bupleurum chinense* DC. were purchased from Jhuacun medicinal herbal market (Kunming, China) and authenticated by Dr. Prof. LEI Li-Gong (Kunming Institute of Botany, Chinese Academy of Sciences). A voucher specimen (No. 20140510) was deposited in the Laboratory of Anti-virus and Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences.

Extraction and bioassay-guided isolation

The dried and powdered roots of *B. chinense* (1.0 kg) were extracted with 70% EtOH (5 L) under reflux thrice, 3 h each. The total extract was filtered and evaporated to give fraction (Fr.) BC (102 g), which showed obvious 5-HT_{2C} agonistic activity *in vitro* with the rate of 174.79% at 333 μg·mL⁻¹. The Fr. BC was subjected to MCI CHP-20P gel CC (490 g, 5 cm × 45 cm), eluted with EtOH-H₂O (10 : 90, 50 : 100, 0/70 each 2.0 L) to afford water fraction (BC-1, 51 g), 50% EtOH fraction (BC-2, 23 g) and EtOH fraction (BC-3, 19 g). Fr. BC-3 showed the highest activity *in vitro* and thus was applied for further investigation.

Fr. BC-3 (19 g) was separated by silica gel CC (200 g, 6 cm × 50 cm), eluted with MeOH–EtOAc–H₂O (2 : 8 : 0.2, 3 : 7 : 0.3, 10 : 0 : 0) to afford three fractions, Frs. BC-3-1, BC-3-2, and BC-3-3. Fr. BC-3-1 (4.7 g) was subjected to an RP-18 gel CC and eluted with MeOH–H₂O (30 : 70→100 : 0) to give five fractions Fr. BC-3-1-1–5. Fr. BC-3-1-1 (1.2 g) was purified by semi-prep. HPLC using MeCN–H₂O (40 : 60) to afford Compounds 6 (24 mg) and 4 (31 mg). Fr. BC-3-1-2 (2.4 g) was submitted on silica gel CC eluted with MeOH–CH₃Cl₂ (5 : 95) and then semi-prep. HPLC with MeCN–H₂O (40 : 60) to yield compounds 13 (25 mg) and 5 (11 mg). Fr. BC-3-1-3 (75 mg) was separated by semi-prep. HPLC with MeCN–H₂O (42 : 58) to yield compound 2 (8 mg). Fr. BC-3-2 (7.0 g) was separated by an RP-18 gel CC with MeOH–H₂O (30 : 70→100 : 0) to afford five fractions Fr. BC-3-2-1–4. Fr. BC-3-2-1 (210 mg) was purified by semi-prep. HPLC (MeCN–H₂O, 35 : 65) to yield Compounds 9 (39 mg) and 7 (121 mg). Fr. BC-3-2-2 (1.2 g) was performed on silica gel CC with MeOH–CH₃Cl₂ (10 : 90) to give compound 3 (310 mg). Fr. BC-3-3-3 (0.5 g) was submitted on silica gel CC, eluted with MeOH–CH₃Cl₂ (1 : 9) then purified by semi-prep. HPLC with MeCN–H₂O (35 : 65) to afford compounds 12 (16 mg) and 1 (7 mg), and 14 (13 mg) respectively. Fr.BC-3-3-4 (0.9 g) was isolated by silica gel CC with MeOH–CH₃Cl₂ (10 : 90) to get compound 11 (14 mg) and Fr. BC-3-3-4-1. Fr.BC-3-3-4-1 was separated by semi-prep. HPLC with MeCN–H₂O (40 : 60) to get compounds 15 (8 mg) and 16 (11 mg). Fr.BC-3-3 (0.6 g) was conducted on silica gel CC with MeOH–CH₃Cl₂ (20 : 80) to provide Fr. BC-3-3-1 and 16.
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات