Observational learning of a spatial discrimination task by rats: learning from the mistakes of others?

Tiaza Bema, Bartosz Jura, Bruno Bontepmi, Pierre Meyrand

A R T I C L E I N F O
Article history:
Received 17 March 2017
Initial acceptance 29 May 2017
Final acceptance 11 September 2017
MS. number: 17-00249R

Keywords:
eight-arm radial maze
false information
observing errors
social learning
spatial reference memory

Learning by observing others has been acknowledged as a powerful learning strategy. Whereas in several species observation of fear conditioning or other operational procedures can improve subsequent performance during actual learning, much less attention has been paid to observational learning of spatial discrimination tasks. To this end, we developed a set of procedures in which the spatial memory of adult rats, Rattus norvegicus, was tested in an eight-arm radial maze. Moreover, in view of controversial information concerning the incidence of mistakes made by demonstrators on the effectiveness of observational learning, our observer rats watched experienced or nontrained demonstrators. Food-deprived observers and demonstrators were initially habituated to the maze with all arms baited. Then observers were placed in a mesh cage positioned above the maze while a demonstrator rat was locating the spatial position of three baited arms. Rats observing conspecifics progressively learning the spatial discrimination improved subsequent performance compared to a control group watching an empty maze, but only if the configuration of baited arms presented during demonstration and testing matched. Therefore, rats integrated relevant spatial information during observation and used it efficiently when their spatial discrimination was tested in the maze. However, when the information was provided by trained demonstrators, making no mistakes and visiting only baited arms, observer rats failed to exhibit improved performance. Nevertheless, when given an initial habituation without food rewards, rats were subsequently able to benefit from observation of trained demonstrators thus showing that watching mistakes was not necessary for successful observational learning. Together, these findings indicate that rats can acquire spatial information via observation enabling more pertinent search strategies during testing and that for observation to be beneficial, what is observed must be sufficiently relevant or novel to complement existing knowledge (here initial habituation with or without rewards).

© 2017 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

In humans and other animals, from invertebrates to primates, new behaviours may be learned through observation of others' experience. Learning by observation has been shown to be crucial in many adaptive behaviours like foraging, predator avoidance, mating decisions, fear learning and problem-solving strategies (Galef & Laland, 2005). Such learning allows the animal to save energy and time by circumventing costly trial-and-error learning or avoiding the threat of an adverse situation. Observational learning (OL) has been reported in invertebrates such as octopus (Fiorito & Scotto, 1992), social insects (Avarguès-Weber & Chittka, 2014; Loukola, Perry, Coscos, & Chittka, 2017; Worden et al., 2005) and nonsocial insects (Cooen, Dangles, & Casas, 2005), as well as in vertebrates such as fishes (Laland and Williams, 1998), birds (Barber & Kimbrough, 2015; Bednekoff & Balda, 1996; Dawson & Foss, 1965; Heinrich & Pepper, 1998) and mammals (Bandura, Ross, & Ross, 1961; Bunch & Zentall, 1989; Isbaine, Demolliens, Belmalih, Brovelli, & Boussaoud, 2015; Jurado-Parras, Gruart, & Delgado-García, 2012; Leggio et al., 2000; Meltzoff & Decety, 2003; Tomasello, Davis-Dasilva, Camak, & Bard, 1987; Yeater & Kuczaj, 2010). Since the pioneering work of Bandura et al. (1961) in humans, it has been shown that the ability to learn by observation is already present at birth and plays a crucial role in developing and mastering languages, social interactions or the use of various tools relevant to everyday life (Meltzoff & Decety, 2003; Nadel &
bene cats, the effectiveness of observational learning. It has been shown in
placed above it.

observed by rats watching the maze from an observational cage
eight-arm radial maze in which the spatial position of speci
a set of controlled appetitive behavioural procedures using an
spatial cognitive maps and enable their successful use during
whether observation of a complex spatial task that includes
made by demonstrators (Monfardini et al., 2013; Yoshida, Saito,
Iriki, Butterworth, 1999). More recently, some disorders such as the
autism spectrum or dyslexia have been partly related to the
inability to learn by observation (Foti et al., 2014; Menghini, Vicari,
Mandolei, & Petrosini, 2011).

Studies have shown that rodents are able to learn by
observing a conspecific performing complex appetitive tasks such as pushing a joystick in a given direction (Heyes & Dawson, 1990; Heyes, Jaldow, & Dawson, 1994) or pressing a lever for a food reward (Will, Pallaud, Soczka, & Manikowski, 1974; Zentall & Levine, 1972). Similarly, information about aversive events can be acquired through social observation as shown by the adoption of crouching postures or immobility or discriminative avoidance in rats, Rattus norvegicus (Del Russo, 1975; Rice & Gainer, 1962) and freezing behaviour in mice, Mus musculus (Jean et al., 2010) after observing distressed conspecifics receiving mild electric foot shocks.

Much less is known about spatial observational learning, as a
subcategory of social learning, in rodents. As recently demonstrat-
strated, rats observing companion rats performing the hidden
platform or cued platform versions of the Morris water maze can
improve their performance when subsequently tested in the pool
(Leggio et al., 2000, 2003). Interestingly, this observation-induced bene
effect was interpreted by the authors predominantly as a
procedural form of learning rather than as a pure localization
form of learning since no evidence of restricted search towards
the platform location could be clearly detected during task
execution. Thus, the ‘knowing how’ component of the water maze
learning procedure benefited more from observational learning
than ‘knowing where’ or ‘knowing what’ components. Therefore,
whether observation of a complex spatial task that includes
learning multiple spatial locations may promote the formation of
spatial cognitive maps and enable their successful use during
testing has remained elusive. To address this issue, we developed
a set of controlled appetitive behavioural procedures using an
eight-arm radial maze in which the spatial position of specific
baited arms in the maze learnt by demonstrators could be
observed by rats watching the maze from an observational cage
placed above it.

Another related question addressed in the present study
concerned the incidence of mistakes made by demonstrators on the
effectiveness of observational learning. It has been shown in
cats, Felis catus, that observation of skilled performances is less
beneficial than observation of the learning process itself (Herbert & Harsh, 1944). In humans and monkeys, learning by observation can recruit some neural circuits that specifically encode errors made by demonstrators (Monfardini et al., 2013; Yoshida, Saito, Iriki, & Isoda, 2012), suggesting that the monitoring of conspecifs’ mistakes may play an important role in the process of learning by observation. These findings contrast with studies pointing to the importance of perfect demonstration (Zentall & Levine, 1972). We therefore compared the effect of observation of a trained demonstrator, providing nearly perfect information concerning the localization of baited arms, with the effect of observing the trial-and-error learning by an inexperienced

demonstrator. In addition to examining the impact of information
value (presence or absence of errors during observation) on the
efficacy of observational learning, we also aimed to unravel the
type of learning strategies (use of abstract procedural rules
potentially efficacious regardless of the precise special position of
the baited arms observed and/or of spatial cognitive maps specif
c to the location of baited arms) that were relevant for pro-
ducing a beneficial effect of observation on spatial learning. To
distinguish between the strategies, we deliberately exposed
observer rats to a mismatch in the position of the baited arms in
between observation and testing.

METHODS

Experimental Subjects

The data were collected from 132 adult male Long Evans rats
(250–350 g) obtained from our regular supplier (Janvier Labs,
Saint-Berthevin, France) and housed two per cage (480 × 265 mm
and 210 mm high, Techniplast, Buguggiate, Italy) in a tempera-
ture- (22 ± 1 ºC) and humidity-controlled (50 ± 10%) animal facility un-
der an automatic 12 h light/dark cycle (lights on at 0700). Approp-
riate bedding (poplar wood granules, Lignocel Select Fine, Safe,
Auyg, France) was added to each cage and changed twice a week.
Rats had ad libitum access to food and water for the first 10 days
after their arrival and were then gradually food restricted to
maintain their body weight at 85% of their ad libitum body weight
throughout the experiments while access to water remained free.
All procedures took place during the light cycle.

Apparatus

The apparatus was an elevated eight-arm radial maze purchased
from IMETRONIC (Pessac, France). As illustrated in Fig. 1, it was
composed of a central platform (40 cm in diameter) from which
radiated eight identical arms (70 cm long and 15 cm wide). The
entrance to each arm of the maze was controlled by automated
sliding doors that could be controlled manually by an experimenter
sitting in an adjacent room. To prevent rats from jumping from one
arm to another or onto the floor, transparent partitions (16 cm long
and 23 cm high) were attached on both sides of the proximate part
of each arm whereas transparent body guards (3.5 cm high) were
fixed along the more distal part of the arms. Each arm was termi-
nated by a small platform with a small shaft (diameter 2 cm, depth
1 cm) in which food rewards were delivered. These rewards were
small chips of crunchy chocolate rice (Kellogs’ Chocopops). The
observational cage consisted of a box (31 × 31 cm and 22 cm high)
where all surfaces, except for the roof, were made of stainless-steel
wire netting (open spaces of 1 by 1 cm). The cage was located 50 cm
above the surface of the maze, equidistantly from the distal parts
two arms of the maze, with one of its side situated at 50 cm from
the edge of the maze’s central platform (Fig. 1). Four different
configurations (124, 782, 146, 368) were used depending on the
experiment (Table 1) with rats randomly allocated to one of these
configurations. While baited arms were not equally distant from

![Figure 1](image.png)
دریافت فوری

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات