Accepted Manuscript

A parallel finite element procedure for contact-impact problems using edge-based smooth triangular element and GPU

Yong Cai, Xiangyang Cui, Guangyao Li, Wenyang Liu

PII: S0010-4655(17)30411-3
Reference: COMPHY 6389

To appear in: Computer Physics Communications

Received date: 10 May 2017
Revised date: 28 September 2017
Accepted date: 11 December 2017


This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
A Parallel Finite Element Procedure for Contact-impact Problems Using Edge-based Smooth Triangular Element and GPU

Yong Cai, Xiangyang Cui, Guangyao Li*, Wenyang Liu

a State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, China

b Joint Centre for Intelligent New Energy Vehicle, Hunan University, Changsha, 410082, China

Abstract:

The edge-smooth finite element method (ES-FEM) can improve the computational accuracy of triangular shell elements and the mesh partition efficiency of complex models. In this paper, an approach is developed to perform explicit finite element simulations of contact-impact problems with a graphical processing unit (GPU) using a special edge-smooth triangular shell element based on ES-FEM. Of critical importance for this problem is achieving finer-grained parallelism to enable efficient data loading and to minimise communication between the device and host. Four kinds of parallel strategies are then developed to efficiently solve this ES-FEM based shell element formulas, and various optimization methods are adopted to ensure aligned memory access. Special focus is dedicated to developing an approach for the parallel construction of edge systems. A parallel hierarchy-territory contact-searching algorithm (HITA) and a parallel penalty function calculation method are embedded in this parallel explicit algorithm. Finally, the program flow is well designed, and a GPU-based simulation system is developed, using Nvidia’s CUDA. Several numerical examples are presented to illustrate the high quality of the results obtained with the proposed methods. In addition, the GPU-based parallel computation is shown to significantly reduce the computing time.

Key words: Smooth finite element; GPU computing; Parallel computing; Contact-impact simulation

1 Introduction

With the development of computing methods and computer technology, finite
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات