Limitations of working memory capacity: The cognitive and social consequences

Aleksandra Gruszka*, Edward Nęcka

Jagiellonian University in Kraków, Poland

ARTICLE INFO

Article history:
Received 15 December 2016
Received in revised form 2 June 2017
Accepted 4 July 2017
Available online xxx

Keywords:
Working memory
Working memory capacity
Cognitive limitations
Information overflow

ABSTRACT

This paper aimed to explore, from the perspective of cognitive psychology, the natural limitations of human cognition that determine our capabilities to deal with information overflow. These limitations are related mainly to the working memory system. This system is conceived to be composed of the storage components, which are responsible for active maintenance, and executive control that supervises the storage units. People differ in their working memory capacities, and because virtually every complex cognitive activity requires the temporal availability of a certain amount of cognitive representations, these differences are predictive of many outcomes. In the area of ‘cold’ cognition, these outcomes include intelligence and verbal reasoning, multitasking, language comprehension and verbal fluency, whereas in the area of ‘hot’ cognition, they include mentalising, stereotyping and self-control. Natural limitations in working memory capacity may be overcome (to some extent) through the training of working memory skills or the application of processing strategies (e.g. task simplification, using external environment as in situated or distributed cognition, changing a code of mental representation).

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the concept of ‘overflow’ has occupied researchers in many fields: from economics to management, consulting and consumer studies, politics, education and so forth (Czarniawska & Lofgren, 2012). However, when one specifically refers to overflow of information, the topic seems particularly relevant to cognitive psychology. Information overflow is defined as a situation in which ‘an individual’s efficiency in using information in their work is hampered by the amount of relevant, and potentially useful, information available to them’ (Bawden & Robinson, 2008, p. 3). This concept is closely related to cognitive load, i.e. the state caused by excessive information supply and demand, continuous multitasking and interruptions, and inadequate workplace infrastructure (Kirsh, 2000). Among other conceptualisations, information overflow has been conceived specifically in relation to working memory (WM), a cognitive system that is responsible for maintaining access to goal-relevant information in support of ongoing cognitive tasks or behaviour (Baddeley, 1983, 2007). Accordingly, information overflow takes place when the amount of information exceeds the capacity of an individual’s WM (Fournier, 1996). This constraint is seen as the primary impediment to knowledge construction (Sweller, 1994) and as a potential cause of everyday failures (Klingberg, 2009).

As Kirsh (2000) noted, studies on information overload were focused on its consequences (see: Bawden & Robinson, 2008), such as information anxiety, i.e. a state of uneasiness caused by the inability to access or process necessary information (Wurman, 1990), or information withdrawal, i.e. a state of avoidance of superfluous sources of information (Savolainen, 2007). It seems that not enough attention has been paid to the sources of this phenomenon. From the perspective of cognitive psychology, overflow may result from structural limitations of basic mental mechanisms that allow exertion and maintenance of control over informational demands.

This paper aimed to show that humans are structurally limited in their cognitive capacities and, consequently, that they are limited in their ability to deal with information overflow. We provide evidence that human cognitive limitations are rooted in the structure and functions of WM, which allows short-term storage and manipulation of task-relevant data. WM is severely limited in its capacity to deal with complex tasks and situations. Moreover, this capacity is not equally distributed among individuals and among task situations. In other words, WM capacity can be conceptualised...
in terms of both a stable trait and a transient state. We demonstrate
that these inter- and intra-individual differences can account for
a variety of phenomena, including the human (in)ability to deal with
information overflow in the social context. First, we describe the
concept of WM. Next, we address the issue of WM capacity. Finally,
we discuss the significance of WM capacity for understanding some
important psychological and social phenomena implicated with
information overflow.

2. The concept of working memory

In a way, the human cognitive system has evolved as a means to
deal with information overflow. For example, humans see only a
small fraction of electromagnetic spectrum and hear only a tiny
portion of acoustic waves. Our momentary awareness of informa-
tional content is also very limited. These limitations are funda-
mental properties of the human mind and brain. The central issue
in cognitive psychology amounts to the exploration of such
limitations.

The early conceptualisations of the limits of human cognition
were related to the concept of short-term memory (STM), a system
responsible for moment-to-moment retention of information
(Broadbent, 1958). Peterson and Peterson (1959) were among the
first psychologists to investigate the time constraints of STM. In
their experiment, participants were asked to remember and recall
(with a delay of 3, 6, 9, 12, 15 or 18 s) meaningless three-consonant
syllables (trigrams), while counting backwards to prevent
rehearsal. Very fast decay of information occurred because partic-
ipsants could recall 80% of trigrams correctly after 3 s of delay, as
compared to less than 10% of trigrams after 18 s (Peterson &
Peterson, 1959). At the same time, George Miller (1956) summar-
ised evidence that people can repeat back only about seven
randomly ordered, meaningful items or chunks of information (i.e.
letters, digits or words). This early research suggested that STM is
very limited in both duration and capacity.

Nowadays, the concept of STM has been replaced by the notion
of WM, first introduced by Miller, Galanter, and Pribram (1960)
and then developed by Baddeley and Hitch (1974). WM is supposed to
be an active, multicomponent system of information storage and
processing. Initially, the model involved the supervisory ‘central
executive’ system and two unimodal storage systems: the phono-
logical loop and the visuospatial sketchpad (Baddeley & Hitch,
1974). The central executive system was envisioned as a control
structure of limited attentional capacity, responsible for manipu-
lating information in the WM and controlling the two subordinate
subsystems. In contrast, both short-term storages, as domain spe-
cific, were responsible for maintaining verbal or visuospatial in-
formation, respectively. Several years later, Baddeley (2000)
supplemented his model with the episodic buffer—a limited ca-
pacity multimodal store responsible for integrating information in
various codes and, with regard to time axis, into unitary episodic
representations. The three storage subsystems are controlled by the
central executive system, which is additionally responsible for
integrating information from various sources into coherent epi-
sodes. Importantly, all the systems proposed by Baddeley were of
limited capacity, although in different ways. The central executive
was conceived as a limited capacity pool of general processing re-
sources, while the phonological loop, the visuospatial sketchpad
and the episodic buffer were subjected to both time and span
constraints.

In the model proposed by Nelson Cowan (1988, 2001), WM is
conceived dynamically as a workspace that consists of temporarily
active representations stored permanently in long-term memory.
In other words, this model identifies WM as a process of main-
taining access to information that is necessary to carry out current
tasks. In Cowan’s view, WM is subdivided into two basic elements:
the central executive system and a homogeneous memory system.
The central executive is responsible for directing attention and
voluntary processing. The representations stored in the memory
system vary in their level of activation, as determined by the cur-
rent task. The focus of attention is composed of a subset of the
activated representations and their associations. The focus can be
directed both outward (to the external environment) and inward
(to the existing memory traces). Importantly, Cowan abandoned
the idea of separateness of memory storage systems, suggesting
that the memory store has a domain-general character (Saults &
Cowan, 2007).

Finally, Klaus Oberauer concluded that ‘working memory (…)’ is
not genuinely a memory. Rather, it is an attentional system that
interacts equally with perception and with (long-term) memory
(Oberauer, 2009, p. 50). The author believes that WM consists of
highly activated memory representations—a fairly dynamic main-
tenance component used for ongoing cognition. The information
is actively maintained because of the process of allocation of atten-
tion. However, WM is also responsible for retrieval of task-relevant
information through cue-dependent retrieval processes (see also,
Unsworth & Engle, 2007). Furthermore, Oberauer (2009) distin-
guished between declarative WM and procedural WM. Both sys-
tems are conceptualised as largely analogous—as three embedded
components that reflect three successive levels of selection of
representations. The declarative WM includes the activated part of
LTM, the region of direct access and the focus of attention. The
procedural part of WM includes the activated procedural repre-
sentations from LTM, the bridge (which holds the currently oper-
tative task set) and the response focus. The procedural WM includes
both primary and executive processes. The primary processes
produce manipulations of declarative representations or overt ac-
ctions, while the executive processes can control primary processes.

In summary, although all theories of WM presented above point
to slightly different research directions (Gruszka & Orzechowski,
2016), they emphasize the role of attentional mechanisms in the
functioning of WM. Information overflow impairs WM processing
by narrowing the scope of attention and restricting the range of
cues that are encoded and processed. In concordance, limits of
attention have also been recognised in the organisational literature
as limits in ‘span of control’ (Stea, Linder, & Foss, 2015). Gifford
(1992) discussed formal models of allocation of entrepreneurial
attention and optimising techniques or rules that guide behaviour
in this regard. Some of the discussed models recognise only limits
in the ability to take in new information (that can be related to the
attention component of WM), but others also recognise limits in
the ability to recall previously obtained information (that can be
related more to the mnemonic component of WM). Importantly, as
Gifford (1992) pointed out, limited attention has a very important
role in organisation as a whole because it constrains to the span
of control of an individual. We believe that cognitive psychology
can add to the understanding of this problem by helping specify the
WM mechanisms. One factor overlooked in the organisational
literature seems to be the issue of individual differences in WM
abilities.

3. Working memory capacity

Although the term WM refers to a hypothetical cognitive system
responsible for providing access to information required for
ongoing cognitive processes, the term working memory capacity
(WMC) is used to refer to individual differences that pertain to the
personal level of WM efficiency (Wilhelm, Hildebrandt, & Oberauer,
2013). These authors distinguished between three theoretical
views on WMC: the executive attention view (Engle, 2002), the
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات