Neural response to catecholamine depletion in remitted bulimia nervosa: Relation to depression and relapse

Stefanie Verena Mueller, Yoan Mihova, Andrea Federspiel, Roland Wiest, Gregor Hasler

Division of Molecular Psychiatry, Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
Psychiatric Neuroimaging Unit, Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
Support Center for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, University Hospital Inselspital and University of Bern, Bern, Switzerland

Received 4 November 2016; received in revised form 13 April 2017; accepted 18 April 2017

KEYWORDS
Bulimia nervosa; Catecholamine depletion; Alpha-methyl-paratyrosine; Relapse; Arterial spin labeling; Cerebral blood flow

Abstract
Bulimia nervosa has been associated with a dysregulated catecholamine system. Nevertheless, the influence of this dysregulation on bulimic symptoms, on neural activity, and on the course of the illness is not clear yet. An instructive paradigm for directly investigating the relationship between catecholaminergic functioning and bulimia nervosa has involved the behavioral and neural responses to experimental catecholamine depletion. The purpose of this study was to examine the neural substrate of catecholaminergic dysfunction in bulimia nervosa and its relationship to relapse. In a randomized, double-blind and crossover study design, catecholamine depletion was achieved by using the oral administration of alpha-methyl-paratyrosine (AMPT) over 24 h in 18 remitted bulimic (rBN) and 22 healthy (HC) female participants. Cerebral blood flow (CBF) was measured using a pseudo continuous arterial spin labeling (pCASL) sequence. In a follow-up telephone interview, bulimic relapse was assessed. Following AMPT, rBN participants revealed an increased vigor reduction and CBF decreases in the pallidum and posterior midcingulate cortex (pMCC) relative to HC participants showing no CBF changes in these regions. These results indicated that the pallidum and the pMCC are the functional neural correlates of the dysregulated catecholamine system in bulimia nervosa. Bulimic relapse was associated with increased depressive symptoms and CBF reduction in the hippocampus/parahippocampal gyrus following catecholamine depletion. AMPT-induced increased CBF in
1. Introduction

Bulimia nervosa (BN) is a severe psychiatric disorder defined by recurrent binge eating episodes accompanied by inappropriate compensatory behavior like purging or excessive exercise. Understanding the pathophysiology of BN could guide the development of new and improved treatments for this disorder. Positron emission tomography (PET) and pharmacological challenge studies have implicated aberrant serotonin signaling in BN (Bailer and Kaye, 2011; Kaye, 2008). PET imaging revealed increased binding of the 5-HTT receptor tracer WAY100635 in ill and recovered BN (Kaye, 2008; Tiihonen et al., 2004), whereas the binding of the 5-HTT tracer 11C-McN5652 did not differ between recovered persons with BN and control participants (Bailer et al., 2007).

Acute tryptophan depletion was followed by increased sadness, body shape concerns, and subjective loss of control of eating in remitted BN (Smith et al., 1999). Monoamine systems interact in a reciprocal manner, such that aberrant serotonin functioning suggests alterations in catecholamine functioning in BN (Tremblay and Blier, 2006). Importantly, abnormal serotonin and dopamine functioning might contribute to different symptoms in BN, as demonstrated in major depression (MDD) (Homan et al., 2015). Whereas tryptophan depletion induced significantly more sadness, hopelessness, and depressed mood, catecholamine depletion induced altered muscle tone, anxiety, difficulty concentrating, inactivity, and somatic anxiety in subjects with remitted MDD (Homan et al., 2015). Indeed, a central role has been proposed for abnormal serotonin and dopamine functioning in BN (Tremblay and Blier, 2006). Importantly, experimental pharmacological challenge studies have implicated aberrant serotonin and dopamine functioning related to a desensitized, and anorexia nervosa (AN) to a ventral striatum and insula. We furthermore conducted a voxel-wise analysis, as we assumed that the dopamine-related dysfunction revealed by catecholamine depletion will be associated with later relapses in rBN participants.

Based on our previous findings (Grob et al., 2012, 2015; Homan et al., 2015), we hypothesized that catecholamine depletion will induce lassitude, inactivity, mood and eating disorder symptoms in rBN participants and that this induction will be associated with reduced CBF in basal ganglia and insula in rBN relative to healthy control (HC) participants. In addition, we assumed that the dopamine-related dysfunction revealed by catecholamine depletion will be associated with later relapses in rBN participants.

By using a pseudo-continuous arterial spin labeled (pCASL) perfusion functional magnetic resonance imaging (fMRI) we aimed to examine the influence of catecholamine depletion on resting brain cerebral blood flow (CBF) in rBN and HC participants. This method provides a direct and absolute quantification of CBF, representing neural activity indirectly through the binding between blood flow and neural activity (Detre et al., 2012; Wang et al., 2011). Arterial spin labeling (ASL) fMRI methods are sensitive to assess different conditions of psychological stress (Wang et al., 2005). Moreover, pharmacological manipulation of the central dopamine system was found to influence CBF in dopamine-rich brain regions: A single dose of haloperidol was reported to increase CBF in the striatum, midcingulate cortex, and motor cortex, and decrease CBF in the inferior temporal gyrus in healthy individuals (Handley et al., 2013). In addition, metoclopramide, a dopamine D2 receptor antagonist, increased CBF in the pallidum, putamen, and thalamus and decreased CBF in the insula and anterior temporal lobes (Fernández-Seara et al., 2011). For investigating our hypotheses, we analyzed the perfusion imaging data using a region of interest (ROI) approach to assess specifically the effect of catecholamine depletion in the basal ganglia and insula. We furthermore conducted a voxel-wise analysis, as we may assume that catecholamine depletion has a high likelihood to induce CBF alterations in brain regions beyond these ROIs.

2. Experimental procedures

2.1. Participants

Eighteen female participants in remission from BN (rBN), and 22 female healthy volunteers (HC) with no history of any psychiatric disorder and no major psychiatric condition in first-degree relatives participated in this study. We included only females in the study because previous studies had reported a higher prevalence of BN in women and had described gender differences in the pathogenesis of BN (Hoek and Hoeken, 2003; Hudson et al., 2007; Nagl et al., 2016; Wettzin et al., 2005). All rBN participants had previously met the DSM-IV criteria for BN, and had been in remission without any binge eating symptoms, mild depressive symptoms and reward learning deficits in fully remitted bulimia nervosa (rBN) (Grob et al., 2012, 2015). These findings provide causative evidence for the exacerbating action of reduced dopamine activity on psychiatric symptoms linked to BN. Nevertheless, studies relating the behavioral effects of catecholamine depletion to measures of brain functioning are still missing. Therefore, in the present study, we focused on the functional neuroanatomical role of the dysfunctional dopamine system in BN and on its impact on relapse.

Based on our previous findings (Grob et al., 2012, 2015; Homan et al., 2015), we hypothesized that catecholamine depletion will induce lassitude, inactivity, mood and eating disorder symptoms in rBN participants and that this induction will be associated with reduced CBF in basal ganglia and insula in rBN relative to healthy control (HC) participants. In addition, we assumed that the dopamine-related dysfunction revealed by catecholamine depletion will be associated with later relapses in rBN participants.

By using a pseudo-continuous arterial spin labeled (pCASL) perfusion functional magnetic resonance imaging (fMRI) we aimed to examine the influence of catecholamine depletion on resting brain cerebral blood flow (CBF) in rBN and HC participants. This method provides a direct and absolute quantification of CBF, representing neural activity indirectly through the binding between blood flow and neural activity (Detre et al., 2012; Wang et al., 2011). Arterial spin labeling (ASL) fMRI methods are sensitive to assess different conditions of psychological stress (Wang et al., 2005). Moreover, pharmacological manipulation of the central dopamine system was found to influence CBF in dopamine-rich brain regions: A single dose of haloperidol was reported to increase CBF in the striatum, midcingulate cortex, and motor cortex, and decrease CBF in the inferior temporal gyrus in healthy individuals (Handley et al., 2013). In addition, metoclopramide, a dopamine D2 receptor antagonist, increased CBF in the pallidum, putamen, and thalamus and decreased CBF in the insula and anterior temporal lobes (Fernández-Seara et al., 2011). For investigating our hypotheses, we analyzed the perfusion imaging data using a region of interest (ROI) approach to assess specifically the effect of catecholamine depletion in the basal ganglia and insula. We furthermore conducted a voxel-wise analysis, as we may assume that catecholamine depletion has a high likelihood to induce CBF alterations in brain regions beyond these ROIs.
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات