The Birmingham experience of high-pressure methylene blue dye test during primary and revisional bariatric surgery: A retrospective cohort study

Heart of England NHS Foundation Trust, Birmingham Heartlands Campus, Bordesley Green, Birmingham, B9 5SS, UK

ARTICLE INFO

Keywords:
- Methylene blue
- Anastomotic leak
- Gastric bypass
- Sleeve gastrectomy
- Leak test

ABSTRACT

Introduction: Leak following bariatric surgery continues to be associated with morbidity and rarely mortality. With improvement in surgical techniques and stapler design, leak rates have reduced drastically. Intra-operative high pressure Methylene blue leak test (HPMB) is one of the techniques employed to confirm integrity of anastomoses and staple lines. Despite this, evidence for its use remains limited. We evaluated the role of HPMB in detecting and preventing leaks.

Methods: A retrospective cohort of consecutive patients who underwent primary or revisional Laparoscopic Sleeve Gastrectomy (SG) or Laparoscopic Roux-en-Y Gastric bypass (RYGB) under the care of five surgeons in three centres across Birmingham, UK, between 2012 and 2016 were assessed. All patients had routine HPMB at the end of the procedure. Demographics, HPMB positivity, and post operative leaks were recorded.

Results: 924 patients underwent bariatric surgery: 696(75.3%) RYGB, and 225(24.3%) SG. 85(9.2%) were revisional procedures.

Two HPMB were positive, which necessitated staple or suture line reinforcement with sutures intra-operatively. The patients had an uneventful recovery. 5 patients had postoperative leaks, all of whom had negative intraoperative HPMB: 3 SG patients; and 2 RYGB patients (gastro-jejunostomy anastomotic leaks). There was no statistically significant relationship between positive HPMB and anastomotic leak (Fishers exact test; p = 1).

Conclusion: Despite routine use of methylene blue dye test in 924 patients, there were only two positive tests. Whilst HPMB may demonstrate technical failure, this study suggests that there is no role for its routine use in primary bariatric surgery. Discontinuation of this practice would reduce risk of anaphylaxis to the dye, cost, and intra-operative time.

1. Introduction

Bariatric surgery is an established treatment for obesity and related co-morbidities providing long term weight loss and increase in life expectancy [1]. Although this patient population is high risk, the morbidity and mortality from these operations is low [2]. There has been a plethora of research into the etiology of bariatric complications, including leak, and strategies for their prevention and treatment. Various techniques have been described including larger bougie size in sleeve gastrectomy, reinforcement of staple lines with Fibrin Glue, use of absorbable buttressing material, and oversewing staple lines in an effort to reduce leak rates [3].

Interestingly leaks may occur as a late event, days or even weeks postoperatively [3–5]. High pressure methylene blue leak test (HPMB) has been routinely used to assess anastomotic integrity following bariatric surgical procedures. Studies have questioned the routine use of leak testing intra-operatively by any technique. Despite the limited evidence supporting the use of HPMB routinely, it continues to be widely used internationally. The International Sleeve Gastrectomy panel failed to reach a consensus as to whether there was any benefit in continuing the routine use of intra-operative leak testing [6].

The aim of this manuscript is to evaluate our practice of routine use of HPMB in Birmingham and analyse the benefit and risk profile of its routine use. Our primary outcome was anastomotic or staple line leak, secondary outcome was procedural complication of HPMB or adverse reaction to methylene blue. This study is registered with the Research Registry and the unique identifying number is: researchregistry2922.

* Corresponding author.

E-mail address: kirbyg@doctors.net.uk (G.C. Kirby).

http://dx.doi.org/10.1016/j.amsu.2017.09.015

Received 28 August 2017; Received in revised form 25 September 2017; Accepted 25 September 2017
2. Methods

We undertook a retrospective cohort study of 924 patients undergoing Laparoscopic Sleeve Gastrectomy (SG) or Gastric Bypass (LRYGB), including revisional bariatric surgery (laparoscopic adjustable gastric band to RYGB/SG; Vertical Banded Gastroplasty to RYGB/SG; SG to RYGB) under the care of 5 experienced surgeons between 2012 and 2016. Patient details were identified from a prospectively maintained database. Private and NHS centres were included. All patients undergoing surgery were included. We recorded any postoperative leak before discharge, or during emergency readmission. Routine post operative contrast imaging was undertaken only if clinically indicated.

SG was routinely calibrated over a 34 Fr gastric tube. Transection was commenced 2.5–5 cm from the antrum. Staple line reinforcement using sutures, buttressing material, or fibrin glue was not performed routinely.

Roux-en-Y gastric bypass was performed with a linear stapled gastro-jejunostomy (45 mm) that was closed over a 34 Fr orogastric tube in two layers using 2/0 mononcryl. Jejuno-jejunostomy was performed with a 45 mm linear stapler and the enterotomy was closed with a single layer 2/0 mononcryl. Intra-operative variations on surgical technique such as retro-colic or ante-colic roux limb were undertaken on surgeon preference and not recorded. The laparoscopic stapling device used was again on individual surgeon choice and were supplied by Medtronic (Dublin, Ireland); and Ethicon (Somerville, USA).

A 34Fr orogastric tube was subsequently used to introduce methylene blue at the completion of surgery to perform the HPMB leak test. In the case of SG the stomach distal to the resection was occluded with a laparoscopic bowel grasper. In LRYGB the jejunal limb to the gastric anastomosis was occluded. This tests the staple line in SG, and the gastro-jejunal anastomosis and blind end of the jejunum in LRYGB. Between 50 and 150 ml of methylene blue was introduced until satisfactory distention was obtained.

A series of systematic analyses have concluded that performance of the leak test did not seem to impact the leak rate (P = 0.454). Some studies have even suggested that intraoperative leak testing, with minimal effect on eventual outcome on the diagnosis of postoperative leaks or of the management of the leaks when they did happen [4,12]. Similarly, Bingham et al. found intraoperative leak test did not predict leak in SG, and postulated that leak testing may increase the risk of postoperative leak [13]. The international consensus group on sleeve gastrectomy attempted but has not reached a definitive conclusion on whether there is a benefit in the use of routine intraoperative leak tests [6]. A series of systematic analyses failed to support routine use of leak tests at the end of bariatric procedures and also failed to ascertain any cost or risk benefit in their routine use [3,14].

It has been estimated that intra-operative testing takes a mean of 7.6 min and that abolishing this routine could result in a cost reduction of $855.37 [4]. Other studies have suggested that intra-operative leak test can be negative even when there is a proven leak on CT in patients taken back to theatre, questioning the sensitivity of this test in the first instance [15]. This is further corroborated by Parikh et al. [14] who concluded that performance of the leak test did not seem to impact the leak rate (P = 0.454). Some studies have even suggested that intraoperative leakage testing was a risk factor for leakage with an odds ratio of 2.26 [16].

Leak tests require the use of nasogastric or orogastric tubes to deliver high pressure dye and there are reported instances of these tubes causing perforations [17]. Whilst methylene blue has a reasonable safety profile and is used widely in a host of surgical techniques it is known to have caused anaphylaxis [18,19].

In our study we detected only two positive intra-operative leak tests. More importantly, all postoperative leaks had a normal HPMB test.

Table 1

<table>
<thead>
<tr>
<th>Procedure</th>
<th>N</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRYGB</td>
<td>611</td>
<td>66.1</td>
</tr>
<tr>
<td>SG</td>
<td>217</td>
<td>23.5</td>
</tr>
<tr>
<td>SG and repair of hiatus hernia</td>
<td>4</td>
<td>0.43</td>
</tr>
<tr>
<td>Single anastomosis gastric bypass</td>
<td>3</td>
<td>0.32</td>
</tr>
<tr>
<td>SG and cholecystectomy</td>
<td>2</td>
<td>0.22</td>
</tr>
<tr>
<td>LRYGB and repair of hiatus hernia</td>
<td>1</td>
<td>0.11</td>
</tr>
<tr>
<td>LRYGB and cholecystectomy</td>
<td>1</td>
<td>0.11</td>
</tr>
<tr>
<td>Revisional Procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastric Band to LRYGB</td>
<td>73</td>
<td>7.90</td>
</tr>
<tr>
<td>SG to LRYGB</td>
<td>6</td>
<td>0.65</td>
</tr>
<tr>
<td>Vertical Banded Gastroplasty to LRYGB</td>
<td>3</td>
<td>0.32</td>
</tr>
<tr>
<td>Vertical Banded Gastroplasty to SG</td>
<td>1</td>
<td>0.11</td>
</tr>
<tr>
<td>Gastric Band to SG</td>
<td>1</td>
<td>0.11</td>
</tr>
<tr>
<td>Revisional SG</td>
<td>1</td>
<td>0.11</td>
</tr>
</tbody>
</table>
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات