Surface imprinted polymers based on amino-hyperbranched magnetic nanoparticles for selective extraction and detection of chlorogenic acid in Honeysuckle tea

Yayun Zhaoa,b, Yuhai Tanga, Jun Hea, Yuan Xua, Ruixia Gaoa,*, Junjie Zhanga, Tie Chongb, Li Wangb, Xiaoshuang Tangb,*

a School of Science, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
b Department of Urology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China

\textbf{A R T I C L E I N F O}

\textbf{ABSTRACT}

Novel water-compatible magnetic molecularly imprinted polymers were developed. The magnetic core was firstly grafted by methyl acrylate and ethylenediamine to increase the number of amino groups, which could immobilize more templates and form high-density recognition sites. Dopamine was adopted as functional monomer and crosslinker to retighten templates and prepare hydrophilic polymers. The characterization, adsorption capability, selectivity, and reusability were investigated in detail. The limit of detection and quantification of the method were 0.01 μg mL−1 and 0.038 μg mL−1. The experimental results exhibited that the resultant nanomaterials had high crystallinity, satisfactory magnetic property, fast kinetics, favorable adsorption capacity, excellent specificity, and pleasing recovery after a mild elution. In addition, the recoveries of the obtained imprinted nanoparticles were used as sorbents for selective separation and determination of chlorogenic acid in Honeysuckle tea.

\section{1. Introduction}

Chlorogenic acid (CHA) extensively exists in higher plants including fruits, vegetables, berries, and some traditional Chinese medicines [1,2]. CHA is a raw material of drug, food, and health care products, which has pharmacological properties containing anti-inflammatory, analgesic, antipyretic [3], antioxidants [4], neuroprotective [5], and antihyperglycemic activities [6]. Actually, CHA usually coexists with some structurally related compounds: caffeic acid, gallic acid, for example. Because of the difficulty in purifying these substances, CHA has yet to be obtained in the crystalline form whether by synthesis or isolation [7]. Therefore, prior to quantification, it is necessary to selective extraction of CHA from complex matrices. Up to now, molecularly imprinted technique, microwave-assisted extraction, and pH gradient counter current chromatography have been employed in the separation and purification of CHA [8–10]. Among these methods, molecularly imprinted polymers (MIPs) used as solid phase extraction (SPE) adsorbents have revealed good prospects [11].

MIPs have attracted growing attention due to their advantages of predetermination, easy preparation, low cost, physical and chemical stability, tolerance to harsh circumstances, and great specificity. All these make MIPs very promising separation tools for SPE and sample preconcentration. So far, MIPs have been used for selective separation of proteins [12], metal ions [13,14], and drugs [15] from complicated samples. Surface MIPs is currently the most popular type of MIPs on account of their improved binding capacity, enhanced mass transfer rate, and high densities of recognition sites. Surface imprinting is based on nano/micro solids (e.g., SiO\textsubscript{2}, quantum dot, carbon nanotube, and magnetic nanoparticle), which is expected to form MIPs with large surface-to-volume ratio and well defined shape [16–19]. Among these solid carriers, magnetic nanoparticles with rapid separation by the aid of an external magnet is the favorite [20]. Magnetic surface MIPs might be hopeful for efficient extraction of CHA from higher plants by virtue of specificity and easy isolation.

\textbf{Abbreviations:} CHA, chlorogenic acid; GA, gallic acid; CA, caffeic acid; PCA, protocatechuic acid; DA, dopamine; IF, imprinting factor; SC, selectivity coefficient; RM, room temperature; Fe\textsubscript{3}O\textsubscript{4}@NH\textsubscript{2}, amino-functionalized Fe\textsubscript{3}O\textsubscript{4} nanoparticles; H-Fe\textsubscript{3}O\textsubscript{4}@NH\textsubscript{2}, amino-hyperbranched magnetic nanoparticles; H-Fe\textsubscript{3}O\textsubscript{4}@CHA-MIPs, imprinted magnetic nanomaterials for CHA; H-Fe\textsubscript{3}O\textsubscript{4}@NIPs, non-imprinted magnetic nanomaterials; SPE, solid phase extraction; VSM, vibrating sample magnetometry; XRD, X-ray diffraction; TEM, transmission electron microscope; SEM, scanning electron microscope; FT-IR, fourier transform infrared; HPLC, high performance liquid chromatography

* Corresponding authors.

\textit{E-mail addresses:} ruixia.gao@mail.xjtu.edu.cn (R. Gao), tangxiaos@sina.com (X. Tang).

\textbf{https://doi.org/10.1016/j.talanta.2018.01.037}

Received 6 September 2017; Received in revised form 2 January 2018; Accepted 15 January 2018
Dopamine (DA) is a small-molecule mimic of the adhesive proteins of mussels. It can self-polymerize to generate polydopamine (PDA) at alkaline pH values, and spontaneously deposit on different kinds of materials to form a conformal layer [21]. PDA is stable, convenient, eco-friendly, and more importantly, with abundant functional groups (such as phenyl, amino, and hydroxyl groups). Owing to these above advantages, DA can be simultaneously served as functional monomer and crosslinker for improving imprinted effect and facilitating synthesis process of MIPs.

In this work, we fabricated Fe₃O₄@PDA core-shell nanomaterials which can be utilized for selective extraction and detection of CHA by combining the merits of magnetic separation, surface MIPs, and two-step immobilized template strategy. The magnetic core was firstly grafted by methyl acrylate and ethanediamine to increase the number of amino functional groups, which could immobilize more templates and form high-density recognition cavities. DA was adopted as functional monomer and crosslinker to retighten template CHA and prepare novel water-compatible MIPs. The characterization, adsorption isotherms/kinetics, competitive binding, and reusability were investigated. The experimental results indicated that the synthetic nanomaterials exhibited high crystallinity, satisfactory magnetic property, fast kinetics, favorable selectivity, and good recovery after a proper elution. Furthermore, the resultant polymers were used as SPE sorbents and accompanied with HPLC for real sample analysis.

2. Experimental

2.1. Chemicals and reagents

Ferricchloride hexahydrate (FeCl₃·6H₂O), 1,6-hexadiamine (HDM), methyl acrylate (MA), ethanediamine, ethylene glycol, anhydrous sodium acetate (NaOAc), phosphoric acid, ethanol, acetonicrile, acetic acid (HAc), hydrochloric acid (HCl), and trihydroxymethyl aminomethane (Tris) were provided by Xi’an Chemicals Ltd. Chlorogenic acid (CHA), caffeic acid (CA), gallic acid (GA), protocatechuic acid (PCA), dopamine (DA), cyanoside, and palmitic acid were obtained from Aladdin Industrial Corporation. The ultrapure water (18.25 MΩ) was obtained from a WaterPro water system (Axlwater Corporation, USA). Chlorogenic acid (CHA) and its analogs or possible co-existing compounds, 35 μg mL⁻¹, were prepared as our previous work [22]. The amino-functionalized Fe₃O₄ nanoparticles (denoted as Fe₃O₄@CHA-MIPs in the absence of the template molecule or competitors on H-Fe₃O₄@CHA-MIPs and H-Fe₃O₄@NIPs, 35 μg mL⁻¹) is the Freundlich constant. Kₑ (mg⁻¹ min⁻¹) is the Freundlich constant. m is the Freundlich exponent which represents the system's heterogeneity.

The selectivity of the obtained nanomaterials was testified by applying three structural analogs (GA, CA, and PCA) and other two possible co-existing compounds (cyanoside and palmitic acid) as the competitors, respectively. Briefly, 10 mL of the mixed standard solution (CHA and its analogs or possible co-existing compounds, 35 μg mL⁻¹) was incubated with 20 mg of H-Fe₃O₄@CHA-MIPs or H-Fe₃O₄@NIPs for 10 min. The following operating steps were similar as those of kinetic adsorption test. The capacity of specific recognition of H-Fe₃O₄@CHA-MIPs was assessed by imprinting factor (IF) and selectivity coefficient (SC) which were expressed in Eqs. (3) and (4).

\[
\text{IF} = \frac{Q_{\text{MIP}}}{Q_{\text{NIP}}} \\
\text{SC} = \frac{IF_{T}}{IF_{C}}
\]

(5)

Where \(Q_{\text{MIP}} \) and \(Q_{\text{NIP}} \) (mg g⁻¹) represent the adsorption capacity of template molecule or competitors on H-Fe₃O₄@CHA-MIPs and H-Fe₃O₄@NIPs. \(IF_{T}\) and \(IF_{C}\) are the imprinting factors for template molecule and competitors.

2.4. Reusability

Six circles of adsorption-desorption procedure were carried out by employing the same polymers to estimate the regeneration of H-Fe₃O₄@CHA-MIPs. 20 mg of H-Fe₃O₄@CHA-MIPs were mixed with...
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات