Accepted Manuscript

The therapeutic potential of polymersomes loaded with 225Ac evaluated in 2D and 3D in vitro glioma models

R.M. de Kruijff, A.J.G.M. van der Meer, C.A.A. Windmeijer, J.J.M. Kouwenberg, A. Morgenstern, F. Bruchertseifer, P. Sminia, A.G. Denkova

PII: S0939-6411(17)31168-2
DOI: https://doi.org/10.1016/j.ejpb.2018.02.008
Reference: EJPB 12688

To appear in: European Journal of Pharmaceutics and Biopharmaceutics

Received Date: 11 October 2017
Revised Date: 5 February 2018
Accepted Date: 7 February 2018

Please cite this article as: R.M. de Kruijff, A.J.G.M. van der Meer, C.A.A. Windmeijer, J.J.M. Kouwenberg, A. Morgenstern, F. Bruchertseifer, P. Sminia, A.G. Denkova, The therapeutic potential of polymersomes loaded with 225Ac evaluated in 2D and 3D in vitro glioma models, European Journal of Pharmaceutics and Biopharmaceutics (2018), doi: https://doi.org/10.1016/j.ejpb.2018.02.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
The therapeutic potential of polymersomes loaded with 225Ac evaluated in 2D and 3D in vitro glioma models

R.M. de Kruijf1, A.J.G.M. van der Meer1, C.A.A. Windmeijer1, J.J.M. Kouwenberg1, A. Morgenstern2, F. Bruchertseifer2, P. Sminia3, A.G. Denkova1

1Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
2 European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, P.O. Box 2340, 76125 Karlsruhe, Germany
3VUmc Cancer Center Amsterdam, De Boelelaan 1118, 1081 HZ Amsterdam

Abstract

Alpha emitters have great potential in targeted tumour therapy, especially in destroying micrometastases, due to their high linear energy transfer (LET). To prevent toxicity caused by recoiled daughter atoms in healthy tissue, alpha emitters like 225Ac can be encapsulated in polymeric nanocarriers (polymersomes), which are capable of retaining the daughter atoms to a large degree. In the translation to a (pre-)clinical setting, it is essential to evaluate their therapeutic potential. As multicellular tumour spheroids mimic a tumour microenvironment more closely than a two-dimensional cellular monolayer, this study has focussed on the interaction of the polymersomes with U87 human glioma spheroids. We have found that polymersomes distribute themselves throughout the spheroid after 4 days which, considering the long half-life of 225Ac (9.9 d) [1], allows for irradiation of the entire spheroid. A decrease in spheroidal growth has been observed upon the addition of only 0.1 kBq 225Ac, an effect which was more pronounced for the 225Ac in polymersomes than when only coupled to DTPA. At higher activities (5 kBq), the spheroids have been found to be destroyed completely after two days. We have thus demonstrated that 225Ac containing polymersomes effectively inhibit tumour spheroid growth, making them very promising candidates for future in vivo testing.
دریافت فوری متن کامل مقاله
امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات