Saccadic entropy of head impulses in acute unilateral vestibular loss

Li-Chun Hsieha,b,c, Hung-Ching Lina,c, Guo-She Leed,e,*

a Department of Otolaryngology, Mackay Memorial Hospital, Taipei, Taiwan
b Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
c Department of Audiology and Speech Language Pathology, Mackay Memorial Medical College, Taiwan
d Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
e Department of Otolaryngology, Taipei City Hospital, Renai Branch, Taipei, Taiwan

Received 20 September 2016; received in revised form 9 November 2016; accepted 24 November 2016

KEYWORDS

acute vestibular loss; chaotic analysis; gain asymmetry; head impulse tests; saccadic entropy

Background/Purpose: To evaluate the complexity of vestibular–ocular reflex (VOR) in patients with acute unilateral vestibular loss (AUVL) via entropy analysis of head impulses.

Methods: Horizontal head impulse test (HIT) with high-velocity alternating directions was used to evaluate 12 participants with AUVL and 16 healthy volunteers. Wireless electro-oculography and electronic gyrometry were used to acquire eye positional signals and head velocity signals. The eye velocity signals were then obtained through differentiation, band-pass filtering. The approximate entropy of eye velocity to head velocity (R_{ApEn}) was used to evaluate chaos property. VOR gain, gain asymmetry ratio, and R_{ApEn} asymmetry ratio were also used to compare the groups.

Results: For the lesion-side HIT of the patient group, the mean VOR gain was significantly lower and the mean R_{ApEn} was significantly greater compared with both nonlesion-side HIT and healthy controls ($p<0.01$, one-way analysis of variance). Both the R_{ApEn} asymmetry ratio and gain asymmetry ratio of the AUVL group were significantly greater compared with those of the control group ($p<0.05$, independent sample \textit{t}-test).

Conclusion: Entropy and gain analysis of HIT using wireless electro-oculography system could be used to detect the VOR dysfunctions of AUVL and may become effective methods for evaluating vestibular disorders.

Copyright © 2016, Formosan Medical Association. Published by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The head impulse test (HIT) is a useful bedside examination that enables identifying the side of peripheral vestibular hypofunction. The head impulses used in the testing are rapid and passive head rotations with unpredictable directions. For an HIT test, a patient is requested to visualize a stationary target and fixate on it while the examiner turns the patient’s head in the plane of pairs of semicircular canals. If the peripheral vestibular system is intact and the vestibular—ocular pathway operates normally, the patient’s eye can remain fixed on the target. If not, covert and overt correcting saccades may be detected during and after head turn to the side of the lesion. Covert saccades are usually not easy to observe using the naked eyes of the examiner and can confound the HIT assessment.

Acute vestibular syndrome (AVS) is a syndrome of new onset, continuous vertigo that lasts for days to weeks, accompanied by nausea and vomiting, motion intolerance, and unsteady gait. Among patients with AVS, vestibular neuritis is the most common cause, followed by posterior fossa ischemic stroke. Differentiation between the two clinical conditions is crucial and challenging for a clinical physician. According to a literature review, the horizontal HIT is an effective bedside predictor of peripheral versus central causes of AVS. A unilaterally abnormal HIT performance was identified in approximately 95% of patients with vestibular neuritis, whereas less than 10% of stroke patients presented with an abnormal HIT. An abnormal presentation of horizontal HIT typically indicates a dysfunction of vestibular—ocular reflex (VOR) and thus suggests a peripheral vestibular lesion. However, a normal HIT in AVS usually implies a stroke. A noninvasive three-step technique to measure the ocular movements in HIT such as optokinetic and vestibular systems for a long time with the electro-oculography (EOG) system is used to evaluate the ocular pathway operates normally, the patient’s eye can remain fixed on the target.

Materials and methods

Participants

Twelve patients (8 women, 4 men; age 27–59 years, with a median of 46 years) presenting with vertigo due to acute unilateral vestibular loss (AUVL) were enrolled from the department of otolaryngology of a tertiary referral hospital between November 2014 and December 2015. The patients with acute vertigo, accompanied by either spontaneous nystagmus or gaze-evoked nystagmus that fulfilled Alexander’s law and was confirmed with videonystagmography, were included. Caloric test was performed in nine patients, and eight of them revealed the normal responses of unilateral weakness >25% (n = 5) or directional preponderance >30% (n = 3). The HIT was performed for all patients within 2 to 7 days after the first symptom was felt. Eight patients were diagnosed with vestibular neuritis and two patients were diagnosed to have unilateral sudden loss of vestibular and cochlear functions. One case was Ramsay Hunt syndrome, and the last patient had right middle ear cholesteatoma with labyrinthitis. Sixteen healthy participants (9 women, 7 men; ages 24–63 years, with a median of 38 years), having no history of vertigo, hearing loss, ear surgery, head surgery, were enrolled as the control group. All participants reported no visual disturbances, ocularmotor diseases, cervical spine disorders, or psychiatric diseases. Written informed consent was obtained from all participants, and the research protocol was approved by the institutional review board (IRB# 11MMHIS131).

Hardware settings

A small and light sensor (5 × 2 × 1 cm in size and less than 20 g in weight) was fixed at the vertex of the head with a headband. Two horizontal electrodes were placed at the outer canthi of the eyes. The sensor consisted of a two-axis electronic gyrometer (LPY550AL, STMicroelectronics, maximal angular velocity 2000°/s, sensitivity 0.5 m/s/V). The headband was used to fix the sensor to the outer canthi of the eyes. The sensor was a small and light sensor (5 × 2 × 1 cm in size and less than 20 g in weight).
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات