Height of the mining-induced fractured zone above a coal face

Gang Wang a,b,⁎, Mengmeng Wu b, Rui Wang b, Hao Xu b, Xiang Song b

a Shandong University of Science and Technology, Mine Disaster Prevention and Control-Ministry of State Key Laboratory Breeding Base, Qingdao 266590, PR China
b Shandong University of Science and Technology, College of Mining and Safety Engineering, Qingdao 266590, PR China

1. Introduction

The overlying and underlying strata are affected during mining. Fractures separating strata on the stratum surfaces and crossing strata interconnect to each other, forming a dynamically changing mining-induced fracture zone. Gas adsorbed in the fractures of coal seams gradually desorbs and flows under gas pressure through strata-crossing fractures into the roadway and mining face (Peng, 2006; Jozefowicz, 1957). The mining-induced fracture zone provides passageways for pressure-relief gas flowing from coal seam and its surrounding coal/rock strata as well as spaces for pressure-relief gas storage (Whittles et al., 2007). Therefore, the mining-induced fracture zone together with the caving zone is defined as gas conducting fracture zone (GFZ). Due to its presence, the desorbed gas will rapidly flow upward in the fracture zone and its above separating zone.

To ensure the safety of gas-bearing coalbed excavation and the rational utilization of coal and gas resources, three primary incentives were proposed for recovering coal mine gas (CMG) (Bibler et al., 1998; Cyrl, 1993). Frequent gas outbursts seriously endanger the lives of mine workers and production safety. Table 1 summarizes the major mine explosions since 2000. Besides production safety, environmental pollution of China also attracts more and more attention. The production and utilization of coal as the traditional high-carbon energy becomes highly controversial, and its severe greenhouse effects make low-carbon energy development become the mainstream of energy development (Warmuzinski, 2008; Ju et al., 2016). Methane emitted from domestic and international coal mines represents approximately 8% of the world’s anthropogenic methane emissions and contributes 17% of the total anthropogenic greenhouse gas emissions (U.S. EPA, 2003, 2010). Therefore, how to deal with coal seam gas production is a major issue in coal mine production. The main component of gas coexisting with coalbed is methane (CH4). Its calorific value is >33,000 kJ/m3 (Zhao, 2005) and comparable to that of conventional natural gas, thus it is considered as a clean energy source. Most mined coal seams in China are Carboniferous and Permian and are rich in coal. Currently, CMG utilization technology has been widely applied worldwide (Karacan et al., 2011; Somers and Burklin, 2012). According to the statistics of China’s 2015 National Energy Board, CMG reserve in China is about 1.023 × 1011 m3 (Zhou et al., 2016). Such high gas content is both serious potential hazard to coal mine safety and resources for national economics if fully utilized.

As the face continuously advances, the overlying strata collapse and some regions are prone to forming fracture zones (Meng et al., 2016). The height, evolution process, and impacting factors of GFZ are often studied using empirical formula, physical experiments, numerical simulation and field tests. Zhang et al. (2009) analyzed the coupling mechanism of flow-stress using the flow-stress damage model-based RFPA2D software, obtained GFZ height and further verified it using an empirical formula. Miao et al. (2011) obtained the GFZ height of Bulianta mining
area through field tests and analyzed the causes for the difference between the field measured height and the calculated result using the empirical formula. Bai et al. (1995) acquired the empirical formula for GFZ height through field tests of multiple coal mines at the condition of stable gob. Zhang and Shen (2004) assessed the redistributed stress by field tests, physical modeling and numerical simulations and further studied GFZ height and strata destabilization mechanisms.

Due to the difficulties in predicting the development of crack initiation, expansion and penetration (Erarslan, 2016; Yang et al., 2014), current studies on GFZ height mainly focus on the field-statistics-based empirical formulas and experimentally unverified numerical simulations. Their results often differ greatly from the on-site reality. In addition, very few investigations focus on the real-time, quantitative description of GFZ height, as well as the status of cracks connection within GFZ. Therefore, quantitative study of GFZ height is of importance.

In this study, using the No. 7435 Face of Kongzhuang Coal Mine as the study subject, we applied the particle flow numerical model to simulate the collapse of the face roof, verified the simulation results using similar material physical experiments, and obtained GFZ height based on the simulated porosity distribution. The results are of significance for reducing gas disasters, improving the efficiency of gas drainage of high position boreholes, which are the construction boreholes drilled from the returning airway to the coal seam roof. In the field, the fractured space formed by caving was used as a gas flow path towards the boreholes under the action of negative pressure of suction, thus extracting large amount of gas to solve the issue of excessive gas concentration in the upper corner and drilling high position boreholes are the most effective way to ensure gas drainage and the safety of gas-bearing coalbed excavation and rationally gas and coal resources mining.

2. Mining and geological conditions of Kongzhuang coal mine

Kongzhuang Coal Mine has longitude of 116°57’13" E and latitude of 34°41’55" N. It is located on the southernmost tip of Datun Mining Area and is about 4 km north of Pei County, Jiangsu Province, and within the area of Weishan County, Shandong Province, China. Kongzhuang Coal Mine went into production in 1977 and has design capacity of 1.05 million t/a. Fig. 1 shows its location. The fully mechanized No. 7435 mining face has elevation of −267 to −188 m, designed advance length of ~1400 m, designed net face length of 134 m, and coalbed average thickness of 6.0 m. Its corresponding surface elevation is +32 m.

<table>
<thead>
<tr>
<th>Country</th>
<th>Date</th>
<th>Coal mine</th>
<th>Fatalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>14 Feb., 2005</td>
<td>Sunjiaowan, Haizhou shaft, Fuxin</td>
<td>214</td>
</tr>
<tr>
<td>USA</td>
<td>2 Jan., 2006</td>
<td>Sago, West Virginia</td>
<td>12</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>20 Sept., 2006</td>
<td>Lenina, Karaganda</td>
<td>43</td>
</tr>
<tr>
<td>Russia</td>
<td>19 March., 2007</td>
<td>Ulyanovskaya, Kemerovo</td>
<td>108</td>
</tr>
<tr>
<td>Ukraine</td>
<td>19 Nov., 2007</td>
<td>Zasyadko, Donetzık</td>
<td>80</td>
</tr>
<tr>
<td>USA</td>
<td>5 April., 2010</td>
<td>Upper Big Branch, West Virginia</td>
<td>29</td>
</tr>
<tr>
<td>Turkey</td>
<td>17 May., 2010</td>
<td>Karadon, Zonguldak</td>
<td>30</td>
</tr>
</tbody>
</table>

In Table 1, some of the major coal mine explosions that occurred after 2000 (modified from United Nations, 2010).

Please cite this article as: Wang, G., et al., Height of the mining-induced fractured zone above a coal face, Eng. Geol. (2016), http://dx.doi.org/10.1016/j.enggeo.2016.11.024
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات