Pediatric medical device development by surgeons via capstone engineering design programs☆☆☆★

Bryan S. Sack a, Rodolfo A. Elizondo b, Gene O. Huang b, Nicolette Janzen b, Jimmy Espinoza c, Magdalena Sanz-Cortes c, Jennifer E. Dietrich c, Julie Hakim d, Eric Richardson d, Maria Oden e, John Hanks f, Balakrishna Haridas f, James F. Hury g, Chester J. Koh b,⁎

a Department of Pediatric Urology, Boston Children's Hospital/Harvard Medical School, Boston, MA
b Division of Pediatric Urology, Department of Surgery, and the Scott Department of Urology, Texas Children's Hospital/Baylor College of Medicine, Houston, TX
c Division of Obstetrics and Gynecology, Texas Children's Hospital/Baylor College of Medicine, Houston, TX
d Division of Pediatric and Adolescent Gynecology, Departments of Surgery and Obstetrics and Gynecology, Texas Children's Hospital/Baylor College of Medicine, Houston, TX
e Oshman Engineering Design Kitchen, Department of Bioengineering, Brown School of Engineering, Rice University, Houston, TX
f Department of Urological Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX
g Business Development and Planning Department, Texas Children's Hospital, Houston, TX

Article info

Article history:
Received 4 January 2017
Received in revised form 27 January 2017
Accepted 28 January 2017
Available online xxxx

Keywords:
Medical devices
Technological innovations
Pediatrics
Urologic surgery
Obstetrical surgery
Fetoscopic surgery

Abstract

Background: There is a need for pediatric medical devices that accommodate the unique physiology and anatomy of pediatric patients that is increasingly receiving more attention. However, there is limited literature on the programs within children's hospitals and academia that can support pediatric device development. We describe our experience with pediatric device design utilizing collaborations between a children's hospital and two engineering schools.

Methods: Using the academic year as a timeline, unmet pediatric device needs were identified by surgical faculty and matched with an engineering mentor and a team of students within the Capstone Engineering Design programs at two universities. The final prototypes were showcased at the end of the academic year and if appropriate, provisional patent applications were filed.

Results: All twelve teams successfully developed device prototypes, and five teams obtained provisional patents. The prototypes that obtained provisional patents included a non-operative ureteral stent removal system, an evacuation device for small kidney stone fragments, a mechanical leech, an anchoring system of the chorionic–amniotic membranes during fetal surgery, and a fetal oxygenation monitor during fetoscopic procedures.

Conclusions: Capstone Engineering Design programs in partnership with surgical faculty at children's hospitals can play an effective role in the prototype development of novel pediatric medical devices.

Levels of evidence: N/A – No clinical subjects or human testing was performed.

© 2017 Elsevier Inc. All rights reserved.

Pediatric and adult surgeons often encounter limitations that prohibit more accurate diagnoses and efficient treatments that could be addressed with new or improved medical devices. Current standard of care practices in pediatric medicine often involve the utilization of adult-designed technologies for pediatric applications. According to the Food and Drug Administration (FDA), there is a need for pediatric medical devices specifically designed to accommodate the unique physiology and anatomy of pediatric patients [1]. The lower pediatric disease incidence, the poor incentives for medical device industry financial return, the high cost of pediatric clinical studies relative to the market size, and the difficulty in enrolling pediatric clinical trial participants [2] have caused a significant lag in pediatric device development compared to adult devices [1]. These limitations have resulted in pediatric surgeons using adult devices for off-label pediatric indications [3–5], with potential legal and ethical ramifications.

In 2007, the passage of the Pediatric Medical Device Safety and Improvement Act (PMDISIA) led to important advances for the pediatric medical device field. This act mandated the tracking of pediatric devices, the facilitation of pediatric device design, as well as the elimination of previous profit restrictions on humanitarian device exemption (HDE).
devices [6], and thereby improving the device approval pathway for
pediatric diseases associated with low incidence rates that meet HDE
requirements (no greater than 4000 uses annually) [7]. The other
commonly used FDA approval pathway is through premarket approval,
which often requires the manufacturer to conduct clinical trials to
demonstrate efficacy and safety [8]. Of note, the FDA recently released
guidance on pediatric extrapolation that allows the use of adult clinical
data for pediatric device approvals that may improve the developmen-
tal pathway for pediatric devices [9].

A major component of PMDSIA was the development of the FDA
Pediatric Device Consortia Grant program, which created pediatric
device consortia at several children’s hospitals and universities across
the United States. The goals of the pediatric device consortia are to
courage innovation, mentoring, and collaborations amongst pediatric
surgeons, engineers, and industry for pediatric device design [6]. To
date, over 775 pediatric device projects have been supported through
the consortia since 2009, including 148 currently active projects and
13 collaborations/multi-consortia projects, with 5 devices in clinical
use to date [6].

However, besides a description on the Biodesign process and
culture that enables pediatric medical technology innovation [10],
there is limited literature on the programs within children’s hospi-
tals and academia that can support pediatric device development.
Pediatric surgeons are ideally placed at the frontline of patient care
where they can identify needs for medical technology improvement.
Conversely, engineers have the technical expertise to create innova-
tive devices, but may not fully appreciate the clinical needs of pedi-
atriic surgeons and their patients. With the goal of creating
partnerships between surgeons and engineers toward effective pedi-
atriic medical device development, we describe our experience at a
major tertiary care children’s hospital with two university Capstone
Engineering Design programs in developing pediatric devices
through a potentially reproducible pathway.

1. Methods

A call for unmet pediatric device needs was distributed to pediatric
surgical faculty members at a major tertiary care children’s hospital
with the intent of partnering faculty members with engineering student
teams in the Capstone Engineering Design programs at two local
engineering schools. These design programs are available in essentially
every major city in the U.S., as all Accreditation Board for Engineering
and Technology programs at universities are required to incorporate
engineering design into their curriculum [11].

Through the Capstone Engineering Design programs, pediatric
surgical faculty worked in interdisciplinary teams with students in
biomedical, mechanical, and/or electrical engineering to develop novel
solutions to real-world pediatric clinical challenges. Over the course of
an academic year, the teams followed a course-specified engineering
design process that included clinical immersion, development of design
criteria, thorough market and field analysis, prototype development,
user feedback, preliminary prototype testing, and participation in
annual engineering showcase events (Fig. 1).

1.1. Identification and selection of unmet pediatric device needs

Prior to the start of the academic year [September], pediatric surgical
faculty members were invited to identify unmet clinical needs that
could potentially be addressed with a pediatric medical device solution.
The surgical faculty described their unmet device needs and clinical
goals on a one-page Capstone proposal form, but were encouraged to
avoid describing solutions at this time, as this would be the focus of
the engineering teams’ work during the academic year. Proposals
were reviewed by a team of senior engineering faculty with device
design experience as well as by experienced surgical faculty to assess
which projects could be addressed by an engineering team with the
local available resources and expertise.

1.2. Team formation and clinical immersion

During the fall semester, the selected projects were presented to the
engineering students in the program, and via a matching process specif-
ic to the engineering school, teams were formed consisting of four to
five engineering undergraduate students, a senior engineering faculty
mentor, and the pediatric surgical faculty member. The senior engineer-
ing faculty mentor served as a technical advisor to the team as well as
monitored their progress toward completion of the prototype develop-
ment milestones. Once the teams were formed, the engineering team
underwent clinical immersion to expose and familiarize themselves
with the clinical problem and identify areas of improvement. This in-
cluded visits to the operating room, clinics, and hospital rooms. The
background research was directed at the historical and modern treat-
ment practices and their technical challenges with the goal of identify-
ing novel engineering solutions. Teams also performed a preliminary
market analysis. Building a base of clinical and technical knowledge
allowed for ideas and solutions brainstorming amongst the team as
they progressed toward prototype development.

Future Directions

Academic Year

- Early Summer
- Early Fall
- Late Fall
- Early Winter
- Early Spring

Identification of Unmet Clinical Needs
Team Formation & Clinical Immersion
Ideas & Solutions Brainstorming
Prototype Development & Testing
Provisional Patent Filing & Annual Showcase

Fig. 1. Academic year timeline for capstone engineering design projects.

Please cite this article as: Sack BS, et al, Pediatric medical device development by surgeons via capstone engineering design programs, J Pediatr Surg (2017), http://dx.doi.org/10.1016/j.jpedsurg.2017.01.067
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات