Dynamic provision of public goods under uncertainty

Toshiki Tamai

Graduate School of Economics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

ARTICLE INFO

JEL classification:
H41
H54

Keywords:
Public goods
Uncertainty
Population size

ABSTRACT

This study investigates the private provision of public goods under uncertainty using a general dynamic equilibrium model with stochastic disturbances. In particular, the model incorporates income shocks governed by a Wiener process with a mean of zero and standard deviation of unity as uncertainty. We analyze how uncertainty and population size affect the supply of public goods. Dynamic analysis shows the importance of attitude toward risk and a contrast between short-run and long-run responses to increases in uncertainty and population size. Results show that under specified conditions, escalating uncertainty reduces the long-run contributions to public goods through the stochastic accumulation of capital but it raises short-run contributions. The average contribution increases to a positive finite value by increasing the population to a certain level, but it declines toward zero if the population size is infinite. These twin results are based on the dynamic behaviors of risk-averse individuals responding to elevated risks.

1. Introduction

The private provision of public goods has attracted theoretical, empirical, and experimental studies in public economics. The literature raises numerous implications about the effect of income redistribution and population size on individual contributions to public goods. Theoretical studies discuss income redistribution as a transfer neutrality (Shibata 1971; Warr 1983; Bergstrom et al. 1986; Andreoni 1988, 1989, 1990; Gradstein et al. 1993) and population size in relation to the free-rider problem that causes the inefficient provision of public goods (Olson 1965; Chamberlin 1974; McGuire 1974; Andreoni 1988; Pecorino 1999; Gaube 2001; Kawachi and Ogawa 2006).

Previous theoretical predictions seem inconsistent with available empirical evidence and experimental results and typically are explained by altruism or idiosyncratic behavior under uncertainty. In particular, uncertainty might affect contributions when people base decisions on conjecture. Austen-Smith (1980) incorporates inadequate information about the supply of public goods into his model and argues that a concave utility function representing risk-aversion increases contributions. Succeeding studies involving generally extended models show that the third-order differential term of a utility function significantly affects contributions (Sandler et al. 1987; Gradstein et al. 1993).

In contrast, Eichberger and Kelsey (2002) provide disparate analyses concerning the provision of public goods under uncertainty. They model individuals’ beliefs by capacities as ambiguity where it is difficult to assign precise probabilities and investigate how ambiguity influences contributions to public goods. They show that elevated uncertainty raises contributions if the utility function is strictly concave. These models postulate static settings for investigating contributions.

Noting an error in Austen-Smith (1980), Sandler et al. (1987) find that risk aversion is insufficient grounds for individuals to increase contributions to public goods.

These authors study accumulation of contributions and show that the equilibrium provision of public goods is below Pareto efficiency. These studies endorse the dynamic provision of public goods, but intertemporal consumption/saving choices remain outside of their scope. Tamai (2010) addresses that deficiency by presenting a deterministic dynamic general equilibrium (DGE) model for the provision of public goods. In extending a deterministic model to a DGE model with stochastic disturbances, the supposition of uncertainty and risk is noteworthy. In postulating the many types of risk, it seems natural to consider macroeconomic shocks to productivity, income, and population that are considered in previous empirical studies (Kormendi and Meguire 1985; Grier and Tullock 1989; Ramey and Ramey 1995; Imbs 2006). Fershtman and Nitzan (1991) study the voluntary provision of public goods and provide a reasonable micro-foundation for conjectural variations equilibrium. Yanase (2006) presents a generally extended model of Itaya and Shimomura (2001). Recently, Wang and Ewald (2010) extended Fershtman and Nitzan (1991) in a stochastic model.

This study extends the results of static models concerning the private provision of public goods to include conditions of macroeconomic uncertainty. The main purpose is to investigate the effect of increased risk on the contributions to public goods, including the neutrality result. Furthermore, we analyze the relation between population size and contributions under the negative correlation between population size and volatility in growth reported by Furceri and Karras (2010) without redistributive taxation. See Turnovsky (2000, Ch.15) and Chang (2004) for the method of solving a stochastic optimization in continuous time.

2. Model

Consider a closed economy having n persons and identical production technology under stochastic diffusion. Time (t) is continuous. Person i produces final goods over instance (t, dt), d_{iy}, using private capital. Production technology is common to all individuals and is assumed to be

$$d_{iy} = A_i kt + \sigma d_z i,$$

where dz represents the Wiener process with mean 0 and standard deviation of 1. $A>0$ denotes the expected productivity coefficient and $\sigma > 0$ is the diffusion coefficient. A larger shock affects-income more than low-income persons. Examples may include windfalls in the stock market or effects of large-scale technological changes in manufacturing or agriculture. Individuals allocate income for private consumption, saving, and contribution to public goods under budget constraint

$$dk = [A_i k_i - c_i - g_i]dt + \sigma d_z i.$$

The instantaneous utility function is defined over private consumption (c_i) and public goods (G). A public good is producible under linear production technology ($G = \sum_{i=1}^{n} k_i$). The agent chooses c_i and g_i to maximize expected lifetime utility such that

$$E \int_{t}^{\infty} U(c_i, G)e^{-\delta dt} dt$$

subject to Eq. (1) ($G = \sum_{i=1}^{n} k_i$ and $g_i \geq 0$). We assume the instantaneous utility function is

$$U(c_i, G) = \frac{c_i^{1-\theta}}{1-\theta} + (1-\theta)G^{1-\theta},$$

where $0<1$, $\theta>0$ and $\theta \neq 1$. When $\theta = 1$, the instantaneous utility function is

$$U(c_i, G) = k \log c_i + (1-\theta) \log G.$$

We focus on symmetric equilibrium to clarify relations among productivity risk, population size, and contribution to public goods.\footnote{If we assume different degrees of CRRA, the response of G to increased risk differs from that of private consumption. Even though the analysis is complicated in such a case, the relative magnitude between two different degrees of CRRA is important for deriving the result.}

We obtain this individually optimal rule for private consumption and public goods by solving the maximization problem under symmetric equilibrium (Appendix A):

$$c_i = \frac{1}{\lambda \pi_n + (1-\theta) \pi_n}(A - \gamma) k,$$

$$G = \frac{(1-\theta) \pi_n}{\lambda \pi_n + (1-\theta) \pi_n}(A - \gamma) k,$$

where

$$\gamma \equiv A - \rho + \frac{\theta-1}{2} \sigma^2 A^2.$$

We assume A is sufficiently large to assure positive values for γ and $A > \gamma$. Note that $nk = \sum_{i=1}^{n} k_i$ on the right side of Eqs. (2a) and (2b). Considering this equation, Eqs. (2a) and (2b) show that the equilibrium level of private consumption and the provision of public goods are independent of the income distribution. This result is well known as the Shibata–Warr neutrality theorem (Shibata 1971; Warr 1983; Bergstrom et al. 1986). We verify this result later.

In contrast, the socially optimal rule for private consumption and public goods under symmetric equilibrium is given as follows (Appendix A):

$$c_i^* = \frac{1}{\lambda \pi_n + (1-\theta) \pi_n}(A - \gamma) k^*,$$

$$G^* = \frac{(1-\theta) \pi_n}{\lambda \pi_n + (1-\theta) \pi_n}(A - \gamma) k^*.$$

Asterisks imply socially optimal values.

Eqs. (1)–(4b) reveal that the equilibrium growth rate of the decentralized economy is identical to that of the centralized economy (Appendix A):

$$\frac{dk}{k} = \frac{dk^*}{k^*} = \rho dt + \sigma d_z i.$$

Eq. (5) implies that saving attains its optimum value. The reason is explained as follows. The contributions to public goods do not affect the production possibility at the current time because public goods only influence the individual’s utility. Furthermore, his/her saving does not directly influence others’ saving (i.e., accumulation of others’ capital) because the rates of return on private capital for others are independent of his/her saving. Thus, each individual chooses the saving to

$$\frac{dk}{k} = \frac{dk^*}{k^*} = \rho dt + \sigma d_z i.$$
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات