Gas exchanges in children with cystic fibrosis or primary ciliary dyskinesia: A retrospective study

Marilyn Fuger\textsuperscript{a}, Camille Aupiais\textsuperscript{b,c,d}, Guillaume Thouvenin\textsuperscript{e,f}, Jessica Taytard\textsuperscript{e,f}, Aline Tamalet\textsuperscript{e}, Estelle Escudier\textsuperscript{g,h}, Priscilla Boizeau\textsuperscript{b,c}, Harriet Corvol\textsuperscript{e,f}, Nicole Beydon\textsuperscript{h,i,⁎}

\textsuperscript{a} AP-HP, Unité d’Exploration Fonctionnelle Respiratoire, Hôpital Armand-Trousseau, Paris, France
\textsuperscript{b} AP-HP, Unité d’Epidémiologie Clinique, Hôpital Robert Debâl, Paris, France
\textsuperscript{c} Université Paris Diderot, Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR_S933, Paris, France
\textsuperscript{d} INSERM U1138, Equipe 22, Sciences de l’information au service de la médecine personnalisée, Paris, France
\textsuperscript{e} AP-HP, Service de Pneumologie pédiatrique, Centre National de Référence des Maladies Respiratoires Rares, Hôpital Trousseau, Paris, France
\textsuperscript{f} Sorbonne Universités, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
\textsuperscript{g} Université Paris Diderot, Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR 5933, Paris, France
\textsuperscript{h} AP-HP, Service de génétique et d’embryologie médicales, Hôpital Trousseau, Paris, France

\textsuperscript{⁎} Corresponding author at: Unité Fonctionnelle de Physiologie-Explorations Fonctionnelles Respiratoires (EFR), Hôpital Armand-Trousseau 26 Avenue du Docteur Arnold Netter, 75571, Paris Cedex 12, France.

E-mail addresses: marilyn.fuger@aphp.fr (M. Fuger), camille.aupiais@aphp.fr (C. Aupiais), guillaume.thouvenin@aphp.fr (G. Thouvenin), jessica.taytard@aphp.fr (J. Taytard), aline.tamalet@cegetel.net (A. Tamalet), estelle.escudier@aphp.fr (E. Escudier), priscilla.boizeau@aphp.fr (P. Boizeau), harriet.corvol@aphp.fr (H. Corvol), nicole.beydon@aphp.fr, nicole.beydon@trs.aphp.fr (N. Beydon).

https://doi.org/10.1016/j.resp.2018.01.010
Received 8 September 2017; Received in revised form 20 December 2017; Accepted 15 January 2018

1. Introduction

Cystic fibrosis (CF) and primary ciliary dyskinesia (PCD) diseases show similarities as they both involve congenital impairment of mucociliary clearance leading to recurrent or chronic rhinosinusitis, airway infection, and bronchiectasis at paediatric age (Knowles and Boucher, 2002). Studies conducted in PCD or CF patients showed close lung function (LF) impairment as measured by static pulmonary volumes (Kraemer et al., 2006; Pifferi et al., 2012), forced expiratory volumes and flows (Magnin et al., 2012; Ren et al., 2008) and ventilation inhomogeneity assessed using the lung clearance index (LCI) with different study protocols (Aurora et al., 2005; Green et al., 2012; Kraemer et al., 2005). However, the latter index was correlated to Forced Expiratory Volume in 1 s (FEV\textsubscript{1}) in CF but not in PCD adolescents and adults, where Forced Expiratory Flows between 25\% and 75\% of FVC (FEF\textsubscript{25-75}) were significantly correlated with LCI in both populations (Irving et al., 2013). FEV\textsubscript{1} is the most frequently used index to evaluate the severity of PCD and CF respiratory disease even though its relevance might differ between these two diseases. In CF patients, FEV\textsubscript{1} was one of the characteristics significantly related to the clinical outcome, including survival (Kerem et al., 2014; Konstan et al., 2007; Liou et al., 2001) whereas the correlation between FEV\textsubscript{1} and future symptoms seemed weaker in PCD children (Ellerman and Bisgaard, 1997; Hellinckx et al., 1998; Marthin et al., 2010). In addition to the presence of ventilation heterogeneity measured by LCI impairment, the deficit in respiratory Nitric Oxide (NO) production could further alter ventilation-to-perfusion ratios in these diseases. NO acts in the lung (among other effects) as an aerocrine messenger with...
vassodilator effect increasing PaO2 in patients with respiratory distress or in healthy subjects (Lundberg et al., 1996a; Lundberg et al., 1996b). The nasal production of NO was measured low in PCD and CF subjects but lower in PCD subjects (Martin and Nielsen, 2011). Moreover, despite a similar total level of orally exhaled NO, PCD patients exhibited lower NO bronchial output and alveolar concentration than healthy subjects, whereas CF patients had only a decrease in NO alveolar concentration (Walker et al., 2013). Finally, unlike CF, PCD first hits lower lung territories where a majority of gas exchanges takes place (Cohen-Cyberknoh et al., 2014), supporting the hypothesis of dissimilar gas exchanges progression in PCD and CF children (the latter experiencing initially apical lesions). In CF children, partial pressure of Oxygen (PaO2) steeply decreased in parallel to (but earlier than) FEV1 reaching low level in school age children while PaCO2 slightly increased from low to normal level (Kraemer et al., 2009). In PCD children, PaO2 also significantly decreased with age and could be altered in school age children but PaCO2 remained stable or slightly increased without association with age (Magnin et al., 2012).

We hypothesized that, independently of central airway impairment, ventilation-perfusion mismatch would start earlier in PCD than in CF children and would worsen quicker in CF children. The demonstration of earlier lung impairment with gentler progression in PCD children compared to CF children would promote the importance of an early diagnosis in PCD in order to limit lung damages.

Our objective was to compare the evolution of gas exchange characteristics, i.e. PaO2, PaCO2 and PaO2/PaCO2 ratio, as a marker of ventilation/perfusion mismatch, in CF and PCD children from 4 to 18 years of age. We also compared characteristics, respiratory history and other LF indexes between CF and PCD children.

2. Methods

2.1. Subjects

Children were recruited from monocenter retrospective cohorts in the National Centre for Respiratory Rare Disease and the Paediatric Cystic Fibrosis Centre of Trouseau Hospital (Paris, France). Data recording started in 2000 up to 2015. Diagnosis retained was CF for children with causal CF mutations and/or positive sweat tests and PCD for children with sino-pulmonary syndrome and situs inversus (i.e. Kartagener syndrome), or suggestive clinical features and typical abnormal ciliary ultrastructure, or causal biallelic mutations in a known PCD gene. In all children, immunodeficiency was excluded as well as diseases which could alter PaO2 (e.g. heart disease with shunt, scoliosis, obesity, airway malacia). Pancreatic sufficient CF children were secondarily excluded because these children are known to have milder respiratory disease and there were too few of them (n = 8) to allow statistical analysis. Bronchiectasis was diagnosed from a standardised computed tomography performed in all PCD children at diagnosis or before depending on lower respiratory symptoms, and in CF children at 5 years of age or before depending on lower respiratory symptoms. Bronchiectasis was confirmed when bronchoarterial ratio was over 1, or when bronchus lacked tapering or were visualised within 1 cm of pleural surface.

We looked for all LFTs including PaO2 measurements and excluded results obtained during acute airway infection or respiratory exacerbation (i.e. change in treatment because of respiratory symptoms during the previous week), or showing a significant bronchodilator response as PaO2 was measured before bronchodilator administration. It is to be noted that in our laboratory, blood gas analyses considered as unreliable are not recorded, and therefore were not available for the present study. Routine criteria for blood gas unreliability and, therefore, non-inclusion were: only one capillary sampled; between-capillary PaO2 difference larger than 1 Standard Deviation (5 mmHg (Gaultier et al., 1979)); child with obvious altered breathing pattern (usually because of cry). Eligible children were included at the time of their first PaO2 measurement available (cross-sectional study), then all subsequent LFT including blood gas analysis performed in stable conditions were recorded (longitudinal study).

2.2. Lung function measurements

Ear lobe capillary blood gas was performed as previously described in our laboratory (Gaultier et al., 1979). The mean of 2–4 capillary results was recorded. Lung function results from children able to perform lung volumes and forced expiratory volumes and flows measurements (Masterscreen, Vyair Medical, CareFusion, Adhésia, France, or BodyBox, Medisoft, Belgium) according to international recommendations were recorded (Beydon et al., 2007; Miller et al., 2005; Wanger et al., 2005). We used the database e-RespiRARE® software national register (elaborated by UMR_S707 and 719, INSERM) to record clinical, microbiological, and therapeutic features.

Children over 8 years of age and their parents gave their consents to perform investigations; the ethical review board of the National Centre approved the retrospective use of the database register on 20/03/2008 (CCTIRS, no.08.015bis).

2.3. Statistical analysis

This study conducted in children with rare respiratory diseases was not based on a power calculation but on the feasibility to retrospectively include repeated PaO2 measurements from our national register of Rare Respiratory Diseases. Quantitative variables were expressed in median and interquartile range [IQR], range and percentage when appropriate. Chi2 or Fisher’s exact tests were applied to compare qualitative data and Wilcoxon’s test to quantitative data. Anthropometric measures and lung function indexes, including PaO2 and PaCO2, were expressed as absolute values, percentages of predicted or as z-scores (standard deviations from the mean) (Gaultier et al., 1979; Quanjer et al., 2012; Rolland-Cachera et al., 1991; Steeks and Quanjer, 1995). To take into account repeated measures in individuals, the effect of the disease on PaO2, PaCO2, and PaO2/PaCO2 ratio was studied using a random-intercept mixed model, adjusted for age. Further bivariate analyses assessed the association of the following covariates with PaO2 (as, in contrast to PaCO2, PaO2 was altered in more than one children): sex, Body Mass Index (BMI), Forced Expiratory Capacity (FVC), FEV1, FEV1/FVC and FEF25%-75%; and genotypes. Then, significant covariates at a 20% threshold were retained in two final multivariate models (one including FVC and the second FEV1 because they were collinear variables). The P-value confirmed a statistical relationship when < 0.05 (two-sided). All analyses were performed using the statistical software (V.9.4; SAS institute).

3. Results

3.1. Participating children

One hundred and twenty-eight patients were eligible. Thirteen patients were excluded; five for being over 18 years at the date of inclusion and eight for being sufficient pancreatic CF. The number of children with data at different age groups in the remaining 115 children (42 PCD and 73 CF) is displayed in Fig. 1. The median [IQR] duration of follow-up of patients was 2.3 [0.8;3.8] years. The median [IQR] number of blood gas measurements per child was 3 [2;4] and the median [IQR] delay between two measurements in a child was 13.1 [11.7;19.4] months.

The 42 PCD and 73 CF children were included at a similar age with characteristics at inclusion (cross-sectional study) displayed in Table 1. As expected, CF children were younger than PCD children at diagnosis due to neonatal screening. Frequency of bronchiectasis was similar between the two groups (61.9% in PCD versus 58.9% in CF; P = 0.75), but bronchiectasis was diagnosed at a younger age in PCD. Despite the
دریافت فوری
متن کامل مقاله
امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش‌های ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات