Magnetic transition at ~150K in nanoscale BiFeO₃

Sudipta Goswami, Dipten Bhattacharya

PII: S0925-8388(17)34291-3
Reference: JALCOM 44193

To appear in: Journal of Alloys and Compounds

Received Date: 27 October 2017
Accepted Date: 11 December 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Magnetic transition at ~150 K in nanoscale BiFeO$_3$

Sudipta Goswami1 and Dipten Bhattacharya2

1Department of Solid State Physics, Indian Association for the Cultivation of Science, Kolkata 700032, India
2Nanostructured Materials Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, India

From the high resolution powder neutron diffraction data, we obtain an evidence of spin-reorientation type transition around ~150 K in nanoscale BiFeO$_3$. The magnetic phase forms at ~150 K, as a result of canting of the spins away from c- to a-axis by ~6$^\circ$, has been modeled by considering two antiferromagnetic phases of propagation vectors $k = (0, 0, 0)$ and $(0, 1/4, 1/4)$ and moments aligned along c- and a-axes. Direct magnetic measurement too, under both 0 and 50 kOe field, offers evidence for such a transition. While the experiment on a single crystal does not offer any evidence of magnetic transition at ~150 K [M. Ramazanoglu et al. Phys. Rev. B 83 (2011), art. 174434(1-6)], clear observation of the transition in nanoscale BiFeO$_3$ implies crucial role of the antiferrodistortive rotation of FeO$_6$ octahedra, associated with large magnetization and enhanced canting angle, in inducing the transition. The transition is found to have a significant influence on the crystallographic parameters too, including the structural noncentrosymmetry which show distinct anomaly around 150 K.

Keywords: Spin reorientation transition, size and strain effect, nanoscale BiFeO$_3$

Introduction

The magnetic structure in multiferroic BiFeO$_3$ is known to be complicated ever since its solution way back in 1982 when the time of flight experiment of neutron diffraction showed that the canted G-type antiferromagnetic structure undergoes a cycloidal modulation over a length scale of ~62 nm [1]. The magnetic transition point (T_N) was determined to be ~653 K in bulk sample. Surprisingly, the neutron diffraction patterns recorded across a wide temperature range 5-700 K did not exhibit signature of any further magnetic transition within 5 K to T_N [2]. In recent times, however, different experiments, including direct magnetic measurements, present
دریافت فوری

متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات