Impact of tropical desert maritime climate on the performance of a PV grid-connected power plant

Daha Hassan Daher, Léon Gaillard, Mohamed Amara, Christophe Ménézo

PII: S0960-1481(18)30308-2
DOI: 10.1016/j.renene.2018.03.013
Reference: RENE 9882
To appear in: Renewable Energy

Received Date: 06 September 2017
Revised Date: 05 March 2018
Accepted Date: 06 March 2018

Please cite this article as: Daha Hassan Daher, Léon Gaillard, Mohamed Amara, Christophe Ménézo, Impact of tropical desert maritime climate on the performance of a PV grid-connected power plant, Renewable Energy (2018), doi: 10.1016/j.renene.2018.03.013

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Impact of tropical desert maritime climate on the performance of a PV grid-connected power plant

Daha Hassan Daher a, b, *, Léon Gaillard c, Mohamed Amara b, Christophe Ménèzo c

a Centre d’Études et de Recherche de Djibouti, Laboratoire des Energies Nouvelles et Renouvelables, Djibouti
b Université de Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, F-69621, Villeurbanne, France
c Université Savoie Mont Blanc, CNRS, Polytech’Annecy-Chambéry, LOCIE UMR 5271, F-73376, Le Bourget-du-Lac, France
* daha.enea@gmail.com

ABSTRACT
This paper provides experimental results on the performance of a grid-connected PV power plant operating under dusty, desert maritime climate conditions using data from the first installation of its kind in Djibouti. The first 4 years of operation were evaluated in terms of IEC 61724 measures, and the impact of climate factors was estimated using a novel combination of analysis techniques. The monthly average daily array yield and final yield were 5.1 kWh/kWp and 4.7 kWh/kWp, respectively. The average performance ratio for respective PV arrays and the global grid-connected system were 90% and 84%, corresponding to monthly average daily PV module and system efficiencies of 12.68% and 11.75%. The seasonal variation in PV module efficiency was found to follow a funnel-shape with a sharp minimum centred on July. The impact of ambient temperature and soiling-induced losses were evaluated, revealing a reduction in the performance ratio by 0.7% for each 1°C rise in daily ambient temperature. Losses due to soiling varied from 0.03% following rainfall events, to 14.23% during dry dusty periods. Finally, to maintain the modules performances losses less than 5%, a cleaning schedule is recommended every two weeks.

Keywords: grid-connected PV system, performance ratio, desert maritime climate, soiling loss.
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات