Author’s Accepted Manuscript

Termite Spatial Correlation based Particle Swarm Optimization for Unconstrained Optimization

Avinash Sharma, Rajesh Kumar, B.K Panigrahi, Swagatam Das

PII: S2210-6502(16)30400-X
DOI: http://dx.doi.org/10.1016/j.swevo.2016.11.001
Reference: SWEVO238

To appear in: Swarm and Evolutionary Computation

Received date: 16 May 2016
Revised date: 29 September 2016
Accepted date: 2 November 2016

Cite this article as: Avinash Sharma, Rajesh Kumar, B.K Panigrahi and Swagatam Das, Termite Spatial Correlation based Particle Swarm Optimization for Unconstrained Optimization, Swarm and Evolutionary Computation, http://dx.doi.org/10.1016/j.swevo.2016.11.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Termite Spatial Correlation based Particle Swarm Optimization for Unconstrained Optimization

Avinash Sharmaa, Rajesh Kumara, B K Panigrahib, Swagatam Dasc

aMalaviya National Institute of Technology, Jaipur, India
bIndian Institute of Technology Delhi, New Delhi, India
cElectronics and Communication Sciences Unit, India Statistical Institute, Kolkata, India

Abstract

In last few years, swarm intelligence has become the mainstay in the field of continuous optimization with many researchers developing algorithms simulating swarm behavior for the purpose of numerical optimization. This work proposes a new Termite Spatial Correlation based Particle Swarm Optimization (TSC-PSO) algorithm inspired by the movement strategy shown within Termites (Cornitermes cumulans). TSC-PSO modifies the velocity equation in the original PSO algorithm by replicating the step correlation based termite motion mechanism that exhibits individually in nature and works with decentralized control to collectively perform the overall task. Further, the algorithm incorporates the mutation strategy within it to make it suitable to avoid stagnation conditions while performing optimization in complex search spaces. For deriving its utility various benchmark functions of different geometric properties have been used. Experiments clearly demonstrate the success of the proposed algorithm in different benchmark conditions against various state-of-the-art optimization algorithms.

Keywords: Spatial correlation, Metaheuristic, Unconstrained optimization and self organization

1. Introduction

Since 1990’s researchers around the world have been analyzing and trying to replicate various natural processes common in physical and biological systems around us. These processes had been proved quite effective when used to formulate optimization algorithms for solving various scientific and engineering problems. In general, the task of optimization is to optimize/tune certain system parameters by formulating the system in terms of a set of mathematical equations. On the basis of whether the algorithm formulation involves randomness or not the optimization algorithm can either be deterministic [1] or stochastic (random) [2]. One such category of the stochastic algorithm called heuristic algorithm
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات