Domain wall oscillation in magnetic nanowire with a geometrically confined region

R. Sbiaa, M. Al Bahri, S.N. Piramanayagam

PII: S0304-8853(17)33290-0
DOI: https://doi.org/10.1016/j.jmmm.2018.02.057
Reference: MAGMA 63734

To appear in: Journal of Magnetism and Magnetic Materials

Received Date: 19 October 2017
Revised Date: 17 January 2018
Accepted Date: 17 February 2018

Please cite this article as: R. Sbiaa, M.A. Bahri, S.N. Piramanayagam, Domain wall oscillation in magnetic nanowire with a geometrically confined region, Journal of Magnetism and Magnetic Materials (2018), doi: https://doi.org/10.1016/j.jmmm.2018.02.057

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Domain wall oscillation in magnetic nanowire with a geometrically confined region

R. Sbiaa, M. Al Bahri and S. N. Piramanayagam
Department of Physics, Sultan Qaboos University, P.O. Box 36, PC 123, Muscat, Oman
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore - 237371
PACS 85.75.-d– Spintronics
PACS 75.60.Ch– magnetic properties and materials
PACS 75.76. +j– Spin transport (magnetoelectronics)

* Corresponding author: rachid@squ.edu.om

Abstract – In conventional magnetic devices such as magnetic tunnel junctions, a steady oscillation of a soft layer magnetization could find its application in various electronic systems. However, these devices suffer from their low output signal and large spectral linewidth. A more elegant scheme based on domain wall oscillation could be a solution to these issues if DW dynamics could be controlled precisely in space and time. In fact, in DW devices, the magnetic configuration of domain wall and its position are strongly dependent on the device geometry and material properties. Here we show that in a constricted device with judiciously adjusted dimensions, a DW can be trapped within the central part and keep oscillating with a single frequency f. For 200 nm by 40 nm nanowire, f was found to vary from 2 GHz to 3 GHz for a current density between 4.8×10^{12} A/m2 and 5.6×10^{12} A/m2. More interestingly, the device fabrication is simply based on two long nanowires connected by adjusting the offset in both x and y directions. This new type of devices enables the conversion of dc- current to an ac- voltage in a controllable manner opening thus the possibility of a new nano-oscillators with better performance.

1. Introduction

The reversal and oscillation of the magnetization of a ferromagnet by a spin transfer torque (STT) effect is of important interest to both academic and technology researchers. Reversing the magnetization by STT without magnetic field is crucial in scaling down the devices size such as magnetic random memory (MRAM) [1–16]. The device is a magnetic tunnel junction (MTJ) composed mainly of a soft magnetic
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات