Wave resource characterization through in-situ measurement followed by artificial neural networks' modeling

Antonio Santos Sánchez, Diego Arruda Rodrigues, Raony Maia Fontes, Márcio Fernandes Martins, Ricardo de Araújo Kalid, Ednildo Andrade Torres

PII: S0960-1481(17)30894-7
DOI: 10.1016/j.renene.2017.09.032
Reference: RENE 9230

To appear in: Renewable Energy

Received Date: 18 November 2016
Revised Date: 7 September 2017
Accepted Date: 9 September 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Wave resource characterization through in-situ measurement followed by artificial neural networks’ modeling

Antonio Santos Sáncheza, Diego Arruda Rodriguesa, Raony Maia Fontesa, Márcio Fernandes Martinsa, Ricardo de Araújo Kalidb, Ednildo Andrade Torresa.

a Federal University of Bahia; b Federal University of South Bahia

Abstract

This research presents a mathematical model that uses artificial neural networks for the assessment of the wave energy potential of sites, based on data recorded by wave monitoring instrumentation. The model was implemented and validated in two different sites. The first one had a dataset from an upward-looking acoustic Doppler current profiler that recorded a hindcast during 2½ years. The second consisted in data from a buoy using motion sensors that recorded continuously during 23 years. For this second site, the performance of the neural network model was compared to that of the Nearshore Wave Prediction System (NWPS), which combines SWAN, Wavewatch III and other numerical models. For the 2½ years’ hindcast, the error of the neural network was significant which suggests a better use for filling missing gaps within datasets than for resource assessment. Meanwhile the performance of the neural network trained with the 23 years’ hindcast was satisfactory; better than the NWPS in terms of relative bias but worse in terms of scatter index. Therefore it is concluded that neural networks can make an optimal use of the data produced by wave monitoring instrumentation and are useful to characterize the wave energy resource of a coastal site.

Key words: wave energy, wave monitoring, artificial neural network, resource assessment

1. INTRODUCTION

1.1 Justification and objectives

Waves are a promising energy resource, although intermittent and unpredictable. The use of this renewable source has two front lines. The first one is the development of more efficient and economical electromechanical
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات