Additively manufactured sub-periosteal jaw implants

Abstract. Severe bone atrophy jeopardizes the success of endosseous implants. This technical note aims to present the innovative concept of additively manufactured sub-periosteal jaw implants (AMSJs). Digital datasets of the patient’s jaws and wax trial in occlusion are used to segment the bone and dental arches, for the design of a sub-periosteal frame and abutments in the optimal location related to the dental arch and for the design of the suprastructure. The implants and suprastructure are three-dimensionally (3D) printed in titanium alloy. The provisional denture is 3D-printed in polymer. AMSJs offer an alternative approach for patients with extreme jaw bone atrophy. This report refers to the use of this technique for full maxillary rehabilitation, but partial defects in either jaw and extended post-resection defects may also be approached using the same technique. This customized, prosthesis-driven reverse-engineering approach avoids bone grafting and provides immediate functional restoration with one surgical session.

Key words: implantation; sub-periosteal; individualized medicine; printing; three-dimensional; alveolar bone loss.

Accepted for publication 8 February 2017

Up to 56% of patients with endosseous implant-retained prostheses develop peri-implantitis, leading to eventual fixture loss. Of the many causes of peri-implantitis, most are not clinically controllable. Maxillary bone loss, whether combined with implant loss or arising from disuse atrophy, poses a major challenge. Current solutions include all-on-4, when sufficient bone is present anterior to the maxillary sinuses; ‘quad-zygoma’ or zygoma implants plus conventional oral implants in the alveolus; and bone grafting with sinus floor augmentation and buccal onlay grafts and subsequent (redo) endosseous implantation. An alternative technique, described below, revisits a 70-year-old concept by applying modern computer-aided design and computer-aided manufacturing (CAD/CAM) technology.

Materials and methods

The dental practitioner chooses a double structure with overdenture or a screw-fixed hybrid bridge, depending on the inter-crestal space, phonetics, lip contour, and patient preference. A wax trial is fabricated, comprising a base plate with a wax bite rim and teeth of the desired colour, shape, and occlusion.

The patient brings the models of the lower dental arch and wax trial to the surgeon who checks the parameters for adequate positioning of the suprastructure in relation to the crest and the occlusal surfaces. The buccal, lingual, and occlusal surfaces of the wax trial model teeth are brushed with radiopaque silicone varnish (X-resin flow; Bredent GmbH and Co. KG, Senden, Germany). Alternatively, radiopaque artificial teeth are used (SR VivoTac and Postierios; Ivoclar Vivadent, Schaan, Liechtenstein). Traditional or cone beam computed tomography (CT) of the maxillofacial complex is performed with the wax trial model in centric occlusion (maximum intercuspation). The lower dental arch model is scanned by high-resolution CT or optical scanning in the laboratory.

Bone and radiopaque tooth surfaces are segmented, and a surface tessellation language (STL) file is generated (e.g., with Geomagic Freeform Plus; 3DSystems, Rock Hill, SC, USA). The occluding
lower dental arch is superimposed. Starting from the upper dental arch (rendered visible by the radiopaquer) that will house the connection screws, the sub-periosteal implant is designed as two segments upon which a customized, screw-retained temporary connecting bar fits. A three-dimensional (3D) print provisional prosthesis is designed. The sub-periosteal implant segment typically has three (sometimes four) abutments fixed to the main frame by four arms (Fig. 1). The main frame generally has two extensions on the midfacial pillars, each of which receives three osteosynthesis screws. The interface between the flanges and the bony surface can be made porous (scaffolding) to encourage osseointegration.

The sub-periosteal implant and temporary bar (Fig. 2) are additively manufactured in titanium grade 23 ELI (extra-low interstitial) (CADskills, Ghent, Belgium). The provisional prosthesis is additively manufactured in C&B MFH (microfilled hybrid) (NextDent, Soesterberg, the Netherlands).

With the patient under general or only local anaesthesia, a crestal incision is made 1 mm caudal to the mucogingival border, with relaxing incisions in the midline and behind the tuberosity (Fig. 3). Sub-periosteal flap dissection is performed in the buccal and palatal areas. The AMSJIs are fitted left and right; this may require tapping because of the tight fit.

The temporary bar structure is connected using a 1.26-mm hexagon screwdriver for Straumann CrossFit screws (or other type according to dentist preference). The additively manufactured NextDent prosthesis is positioned on the temporary bar, in proper occlusion with the lower dental arch. The AMSJIs are fixed with osteosynthesis screws of an appropriate length, as indicated by a medical engineer. Adjustments can be performed between the AMSJI and bone surface or between the temporary denture and temporary bar. For the latter, MultiLink Hybrid Abutment (Ivoclar Vivadent) forms an ultraviolet-cured hard adhesion, but Coe-Soft pearls (GC Europe, Leuven, Belgium) are preferred. A Coe-Pak (GC Europe) wound dressing is applied. Masticatory load is reduced for 2 months to allow undisturbed osseointegration by progressive loading.

The definitive hybrid bridge (Fig. 4) or double structure is constructed 2 months later, generally based on the original sub-periosteal implant design. Occasionally a new wax trial is used to accommodate the patient’s wishes and phonetic results. The base plate of the wax trial is preferably radiopaque (e.g., Henry Schein Dental, Melville, NY, USA) to allow gingival segmentation, which facilitates better cervical contouring of the prosthesis. For double structures, Locator, CM Loc, or Dalbo-X (Cendres + Métaux SA, Biel, Switzerland) connectors are used.

![Fig. 1. Computer rendering of two additively manufactured sub-periosteal jaw implant (AMSJI) segments positioned on the bone. The arms connecting the main frame are designed in such a way that the incision is not overlying. In the first series of three patients, small dehiscences were observed over the arms when placed on the crest. Note the weakening by scaffolding at the cranial end of the arms connecting the abutments to the main frame. This allows individual dismantling without heating in the case of peri-abutment mucositis, such that the AMSJI segment does not need to be removed. The prosthesis remains functional on four abutments.](http://dx.doi.org/10.1016/j.ijom.2017.02.002)

![Fig. 2. The two additively manufactured sub-periosteal jaw implant (AMSJI) segments have been fitted on the bone and splinted with a temporary suprastructure. Note that some of the connecting arms are on top of the crest, a design that was abandoned after the first three cases.](http://dx.doi.org/10.1016/j.ijom.2017.02.002)

![Fig. 3. Artist rendering of the horseshoe-shaped incision, with three relaxing incisions oriented sagittally. The main incision is located a few millimetres below the mucogingival margin. The bulk of the frame under the palatal gingiva tends to shift the medial incision line medially. Wound closure around the abutments can be quite challenging when the main incision is placed on top of the crest. Periosteal release should be done at the beginning of the surgery in order to avoid a postoperative haematoma in the cheek.](http://dx.doi.org/10.1016/j.ijom.2017.02.002)
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات