Competing models of firm profitability

Margaret E. Slade

Department of Economics, University of Warwick, Coventry CV4 7AL, UK

Received 11 September 2003; received in revised form 9 December 2003; accepted 9 December 2003

Abstract

In this paper, I look at four models of firm profitability: two taken from Industrial Organization, one from Finance, and one from the Economics of Exhaustible Resources. Only one predicts that there will be a positive relationship between firm profitability and the structure of the market in which the firm operates, and only that one views high profits as an indication of monopoly power. Nevertheless, most antitrust authorities base their policies on a belief in those relationships. Using panel data from 14 nonferrous-metal mining and refining markets, I find strong empirical support only for the market-structure model.

© 2004 Elsevier B.V. All rights reserved.

JEL classification: D43; G13; L13; L71

Keywords: Firm profits; Market structure; Market share; Risk premia; Resource exhaustion; Principal components

1. Introduction

Virtually all branches of economics embrace the notion that firms attempt to maximize profits. Nevertheless, although some firms are substantially more profitable than others, most earn only a competitive rate of return. Given those facts, it is not surprising that economists from various subdisciplines have developed models that predict which firms will earn high rates of return and how those rates can be sustained in a world in which profits attract entry.

In this paper, I summarize four such models: two that originate in the field of industrial organization (IO), one that comes from financial economics, and one that has its origins in

☆ This paper was prepared for my Presidential Address to the members of the European Association for Research in Industrial Economics (EARIE) at their annual meeting in Helsinki, Finland in August of 2003.

E-mail address: m.slade@warwick.ac.uk (M.E. Slade).
the economics of exhaustible resources. Each singles out a different factor as the principal
determinant of profitability. In particular, the first emphasizes the structure of the market in
which the firm operates, the second points to the firm’s share of that market, the third
focuses on the firm’s risk class, and the last emphasizes resource scarcity and intertemporal
arbitrage.

The four models of firm profitability originate in traditions that view the economic
world in very different lights. Nevertheless, although some are better characterized as
searches for empirical regularities, all can be rationalized by economic theory. Only the
first, however, predicts a causal relationship between industry concentration and firm
profitability. Furthermore, only the first interprets the existence of high profits as evidence
of monopoly power.

Nevertheless, antitrust agencies in most Western countries implicitly assume that a
profits/concentration connection exists. In particular, most agencies require that product
and geographic markets be defined and indices of concentration be calculated before any
monopolization or merger case can be brought forward.1 This practice is adhered to in
spite of the fact that it is not only impossible to prove unambiguously that a causal
relationship links profits to concentration,2 but also many theories attribute high profits to
superior efficiency, not market power.

Given an abundance of theories and predictions, it is natural to turn to data in an
attempt to disentangle and assess predicted effects. This exercise is not new. Rather, it is a
very old tradition in IO that has fallen out of fashion.3 One reason for the fall from fashion
is that it is difficult to move beyond mere correlation to a determination of causality. This
difficulty arises because most of the variables that have been used in empirical tests are
potentially endogenous.

Rather than attempting to determine causality, I take a descriptive approach.4 In
particular, I look at equilibrium rather than causal relationships. Those relationships are
evaluated by calculating the principal components of a matrix of endogenous variables,
interpreting the components that have the highest explanatory power, and assessing how
the original variables are related to those components. In other words, I seek to uncover the
important relationships—those that explain a large fraction of the cross-sectional and time-
series variation in the data.

This technique is applied to data from nonferrous-metal mining and refining industries.
Those industries produce homogeneous commodities that have well defined product and
geographic markets. In particular, 14 commodity markets are examined in the application.
The data consist of an unbalanced panel of the principal mining and refining firms and
include the production of each of those firms in each market.5

The industries were chosen because they satisfy the assumptions that underlie the
theoretical models. In other words, the theories are examined in a context in which the

1 Many other sorts of antitrust cases also rely heavily on concentration indices.
2 In particular, under some assumptions, one can demonstrate that no such connection exists.
3 The empirical IO literature has moved from an examination of many markets using the same model to an
emphasis on case studies that are fine tuned to fit particular markets and are much more data intensive.
4 The exercise that is performed here is most closely related to the work of Schmalensee (1985).
5 The panel is unbalanced due to mergers and acquisitions.
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات