Multi objective evolutionary algorithm for designing energy efficient distribution transformers

S. Tamilselvi, S. Baskar, L. Anandapadmanaban, V. Karthikeyan, S. Rajasekar

PII: S2210-6502(17)30290-0
DOI: 10.1016/j.swevo.2018.01.007
Reference: SWEVO 348

To appear in: Swarm and Evolutionary Computation BASE DATA

Received Date: 13 April 2017
Revised Date: 5 December 2017
Accepted Date: 15 January 2018

Please cite this article as: S. Tamilselvi, S. Baskar, L. Anandapadmanaban, V. Karthikeyan, S. Rajasekar, Multi objective evolutionary algorithm for designing energy efficient distribution transformers, Swarm and Evolutionary Computation BASE DATA (2018), doi: 10.1016/j.swevo.2018.01.007.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Multi Objective Evolutionary Algorithm for Designing Energy Efficient Distribution Transformers

S.Tamilselvi, S.Baskar, L.Anandapadmanaban, V.Karthikeyan, S.Rajasekar

1Department of Electrical and Electronics Engineering, SSN College of Engineering, Kalavakkam, TamilNadu, India
2Department of Electrical and Electronics Engineering, Thiagarajar College of Engineering, Madurai, India
3Kingston College of Engineering, Vellore, TamilNadu, India
4Motilal Nehru National Institute of Technology, Allahabad, India
5NEC Laboratories, Singapore
*tamilselvi.manjuraj@gmail.com & tamilselvis@ssn.edu.in

Abstract--This paper has solved the transformer design optimization problem using Multi-Objective Evolutionary Algorithms based on Decomposition with Dynamical Resource Allocation (MOEA/D-DRA). For lesser computation burden, the existing design techniques merely employ few Standard Design Variables (SDV), satisfying only a few performance constraints, resulting in an approximated design, without any focus on an energy efficient transformer. The proposed methodology minimizes four sets of conflicting design bi-objectives, subjected to 27 constraints, incorporating three crucial design variables with SDV to ensure energy efficient transformer design with lesser losses, total life time cost (TLTC), green house gas emission, and failure rate. Different cases are analysed on a sample 1500kVA transformer, which is designed by existing technique and the proposed multi objective optimization problem formulation approach and the performances of the competing transformers are compared. To prove the effectiveness of Iterative Chaotic map with infinite collapses assisted MOEA/D-DRA (ICMDRA), NSGA-II has also been successfully applied to solve the problem. When tested in all three different rating transformers, the simulation results have proved that the proposed methodology saves energy, cost, and material, with ICMDRA rather than NSGA-II. This paper identifies ICMDRA as a superior algorithm for transformer design, in terms of diversity and convergence. Also, the core loss calculation of the transformer designed using the proposed methodology is validated by 3D-FEM assessment and experimental prototype setup for a 200kVA transformer.

Index Terms- Multi objective transformer design optimization, NSGA-II, MOEA/D-DRA, TLTC, crucial design variables, GHG emission.

Nomenclature

ABBREVIATION:
CDV CDV Crucial Design Variables
FEM FEM Finite Element Method
GHG GHG Green House Gases
HV HV High Voltage
ICMIC ICMIC Iterative Chaotic Map with Infinite Collapses
ICMDRA ICMDRA Chaos with MOEA/D-DRA
KBS KBS Knowledge Based Systems
LV LV Low Voltage
MOEA/D-DRA MOEA/D-DRA MOEA based on Decomposition with Dynamical Resource Allocation
MOEA MOEA Multi-Objective Evolutionary Algorithm
MOTDO MOTDO Multi Objective TDO
NSGA NSGA Non-dominated Sorting Genetic Algorithm
SDV SDV Standard Design Variables
TDO TDO Transformer Design Optimization
TLTC TLTC Total Life Time Cost
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات