Effects of punching process on crystal orientations, magnetic and mechanical properties in non-oriented silicon steel

Wei Wu, Hongzhi Cao, Hao Ou, Zhichao Chen, Xianglin Zhang, Zhonghan Luo, Shenlin Chen, Rongfeng Li

PII: S0304-8853(17)30631-5
DOI: http://dx.doi.org/10.1016/j.jmmm.2017.07.003
Reference: MAGMA 62933

To appear in: Journal of Magnetism and Magnetic Materials

Received Date: 17 February 2017
Revised Date: 1 July 2017
Accepted Date: 2 July 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Effects of punching process on crystal orientations, magnetic and mechanical properties in non-oriented silicon steel

Wei Wu, Hongzhi Cao, Hao Ou, Zhichao Chen, Xianglin Zhang, Zhonghan Luo, Shenlin Chen, Rongfeng Li

1 State Key Laboratory of Materials Processing and Die & Mould Technology, College of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

2 National Engineering Research Center for Silicon Steel, Wuhan Iron and Steel Group Corp, Wuhan 430080, China.

3 Research and Development Center, Wuhan Iron and Steel Group Corp, Wuhan 430080, China.

Abstract

In an attempt to investigate the effects of punching process on crystal orientations, magnetic and mechanical properties in non-oriented silicon steel, the steel sheet was punched for circular shape of Φ40mm. The crystal orientations and small-angle grain boundaries were characterized by electron backscatter diffraction (EBSD). The results indicated that the initial crystal orientations within a distance of 200µm away from the sheared edge were significantly changed after the punching process. In this area, the fractions of the directions with a high value of magnetocrystalline anisotropy energy E_a, $<111>$, $<212>$ and $<112>$ can reach up to 0.619. However, the fractions of the directions $<001>$ and $<113>$ accounts for only 0.096, which have a lower value of E_a. Moreover, the fraction of small-angle grain boundaries markedly increased in the area of about 200µm from the sheared edge, which is mainly attributed to the dislocations multiplication and dislocations motion. The magnetic domain structures were characterized by an optical microscope according to the Bitter method. The results showed that the width of magnetic domain in the sheared edge was much larger than that in the center and the patterns also existed a big difference. The Vickers HV0.1
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات