Accepted Manuscript

Coal-to-biomass retrofit in Alberta –value of forest residue bioenergy in the electricity system

Victor Keller, Benjamin Lyseng, Jeffrey English, Taco Niet, Kevin Palmer-Wilson, Iman Moazzen, Bryson Robertson, Peter Wild, Andrew Rowe

PII: S0960-1481(18)30280-5
DOI: 10.1016/j.renene.2018.02.128
Reference: RENE 9859

To appear in: Renewable Energy

Received Date: 27 September 2017
Revised Date: 6 February 2018
Accepted Date: 28 February 2018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Coal-to-biomass retrofit in Alberta – value of forest residue bioenergy in the electricity system

Abstract

The use of forest residue may mitigate greenhouse gas emissions by displacing the use of coal or other fossil fuels for electricity generation. However, economic viability of bioenergy requires availability of feedstock at appropriate cost. The current work attempts to quantify delivered biomass cost at plant gate and estimate cost and emission benefits to the electricity system associated with the conversion of coal units to bioenergy. This study is carried out with the optimization model OSeMOSYS, analyzing the Alberta electrical system, its mid-term coal phase-out and renewable energy targets. Alternative scenarios were compared to evaluate the effect of a biomass retrofit option on the incentives needed to achieve 30% renewable penetration by 2030. Results show that although bioenergy has a higher levelized cost than wind power, the system requires less backup capacity and less renewable energy credits to meet renewable energy goals when the biomass retrofit is allowed. In addition, the total system cost to 2060 is found to be 5% less than the scenario without the biomass option. The firm capacity provided by biomass compensates for its higher levelized cost of energy.

Keywords Forest residue; bioenergy; emissions; electrical system; coal conversion

Authors

Victor Keller*a,*, Benjamin Lysenga, Jeffrey Englisha, Taco Nietab, Kevin Palmer-Wilsona, Iman Moazzena,
Bryson Robertsona, Peter Wilda, Andrew Rowea.

a Institute for Integrated Energy Systems, University of Victoria, PO Box 1700 STN CSC, Victoria, BC V8w2Y2, Canada
b School of Energy, British Columbia Institute of Technology, 3700 Willingdon Avenue, Burnaby, BC V5G3H2, Canada.

* Corresponding author kellerv@uvic.ca

1. Introduction

Following the United Nations Framework Convention on Climate Change 2015, a number of countries have announced policies to phase out, or significantly decrease, the use of coal for energy; these include the U.S.A. (1) (2), Finland (3), France (4) and Canada (5) (6). Coal fired electricity is a greenhouse gas (GHG) intensive generator accounting for over 40% of the world’s electricity production (7). Given the long operational lifetime of coal generating facilities, accelerated coal phase out can lead to significant stranded capacity and economic cost (8). These factors may impede participation in climate agreements from nations such as China or India where coal represent over 55% of the installed capacity.
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات