Original article

Generalized semi-open and pre-semiopen sets via ideals

Bishwambhar Roya,*, Ritu Senb

aDepartment of Mathematics, Women’s Christian College, 6, G. C. Row, Kolkata — 700 026, India
bDepartment of Mathematics, Presidency University, Kolkata — 700073, India

Received 15 March 2017; received in revised form 1 August 2017; accepted 10 August 2017

Available online xxxxx

Abstract

In this paper we have introduced a new type of sets termed as \(\mu^* \)-open sets which unifies semiopen sets, \(\beta \)-open sets and discussed some of its properties. We have also introduced another type of weak open sets termed as \(I_\mu \)-open sets depending on a GT as well as an ideal on a topological space. Finally the concept of weakly \(I_\mu \)-open sets are investigated.

Keywords: \(\mu \)-open set; Ideal; \(\mu^* \)-open set; \(I_\mu \)-open set; Weakly \(I_\mu \)-open set

1. Introduction

The concept of ideal on topological spaces was studied by Kuratowski [1] and Vaidyanathaswamy [2] which is one of the important areas of research in the branch of mathematics. After them different mathematicians applied the concept of ideals in topological spaces (see [2–8]). In the past few years mathematicians turned their attention towards the generalized open sets (see [8–12] for details). Our aim in this paper is to use the concept of ideals in the generalized topology introduced by A. Császár. We recall some notions defined in [10].

Let \(\text{exp} X \) denote the power set of a non-empty set \(X \). A class \(\mu \subseteq \text{exp} X \) is called a generalized topology [10], (briefly, GT) if \(\emptyset \in \mu \) and \(\mu \) is closed under arbitrary union. The elements of \(\mu \) are called \(\mu \)-open sets and the complement of \(\mu \)-open sets are known as \(\mu \)-closed sets. A set \(X \) with a GT \(\mu \) on it is known as a generalized topological space (briefly, GTS) and is denoted by \((X, \mu)\). A GT \(\mu \) is said to be a quasi topology (briefly QT) [17] if \(M, M' \in \mu \) implies \(M \cap M' \in \mu \). The pair \((X, \mu)\) is said to be a QTS if \(\mu \) is a QT on \(X \).

For any \(A \subseteq X \), the generalized \(\mu \)-closure of \(A \) is denoted by \(c_\mu (A) \) and is defined by \(c_\mu (A) = \cap \{ F : F \in \mu \text{ and } A \subseteq F \} \), similarly \(i_\mu (A) = \cup \{ U : U \subseteq A \text{ and } U \in \mu \} \) (see [10,11]). Throughout the paper \(\mu, \lambda \) will always mean GT on the respective sets.

* Corresponding author.
E-mail addresses: bishwambhar roy@yahoo.co.in (B. Roy), ritu sen29@yahoo.co.in (R. Sen).

Peer review under responsibility of Journal Transactions of A. Razmadze Mathematical Institute.

http://dx.doi.org/10.1016/j.trmi.2017.08.003
2346-8092/© 2017 Ivane Jawakhishvili Tbilisi State University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
An ideal [1] \(I \) on a topological space \((X, \tau)\) is a non-empty collection of subsets of \(X\) with the following properties:

(i) \(A \subseteq B \) and \(B \in I \Rightarrow A \in I \)

(ii) \(A \in I, B \in I \Rightarrow A \cup B \in I \).

An ideal \(I \) on a topological space \((X, \tau)\) is denoted by \((X, \tau, I)\) and known as an ideal topological space.

2. \(\mu^* \)-open sets

Definition 2.1. Let \(\mu \) be a GT on a topological space \((X, \tau)\). A subset \(A \) of \(X \) is called \(\mu^* \)-open [13] if \(A \subseteq cl(i_\mu(A)) \).

Theorem 2.2. Let \(\mu \) be a GT on a topological space \((X, \tau)\). Then \(A \) is \(\mu^* \)-open if and only if there exists a \(\mu \)-open set \(U \) such that \(U \subseteq A \subseteq cl(U) \).

Proof. Let \(A \) be a \(\mu^* \)-open set. Then \(A \subseteq cl(i_\mu(A)) \). Let \(U = i_\mu(A) \). Then \(U \) is \(\mu \)-open and \(U \subseteq A \subseteq cl(i_\mu(A)) = cl(U) \). Conversely, let there exist a \(\mu \)-open set \(U \) such that \(U \subseteq A \subseteq cl(U) \). Then \(U \subseteq A \Rightarrow U \subseteq i_\mu(A) \Rightarrow cl(U) \subseteq cl(i_\mu(A)) \Rightarrow A \subseteq cl(i_\mu(A)) \). Thus \(A \) is \(\mu^* \)-open.

Remark 2.3. Let \(\mu \) be a GT on a topological space \((X, \tau)\). If

(i) \(\mu = \tau \), then \(\mu^* \)-open set reduces to semiopen set [14];

(ii) \(\mu = P O(X) \), then \(\mu^* \)-open set reduces to \(\beta \)-open set [15];

(iii) every \(\mu \)-open set is \(\mu^* \)-open;

(iv) If \(\lambda \) be any other GT on \(X \) with \(\mu \subseteq \lambda \), then every \(\mu^* \)-open set is \(\lambda^* \)-open.

Note 2.4. Let \(\mu \) be a GT on a topological space \((X, \tau)\). Then the collection of all \(\mu^* \)-open sets forms a GT on \(X \).

Proof. Clearly \(\emptyset \) is a \(\mu^* \)-open set. Let \(\{A_\alpha : \alpha \in A\} \) be a family of \(\mu^* \)-open sets. Then there exist \(\mu \)-open sets \(U_\alpha \) such that \(U_\alpha \subseteq A_\alpha \subseteq cl(U_\alpha) \) for each \(\alpha \in A \). Thus \(\cup\{U_\alpha : \alpha \in A\} = U \) (say) \(\subseteq \cup\{A_\alpha : \alpha \in A\} \subseteq cl(U) \) where \(U \) is \(\mu \)-open showing that the union of \(\mu^* \)-open sets is \(\mu^* \)-open.

Example 2.5. (a) Let \(X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{a, c\}, X\} \) and \(\mu = \{\emptyset, \{c\}, \{a, c\}\} \). Then \(\mu \) is a GT on the topological space \((X, \tau)\). It can be checked easily that \(\{b, c\} \) is a \(\mu^* \)-open set which is not a \(\mu \)-open set.

(b) Let \(X = \{a, b, c\}, \mu = \{\emptyset, \{a, b\}, \{a, c\}, \{b, c\}, X\} \) and \(\tau = \{\emptyset, \{a\}, \{a, b\}, \{a, b\}, X\} \). Then \(\mu \) is a GT on the topological space \((X, \tau)\). It can be easily verified that \(\{a, b\} \) and \(\{a, c\} \) are both \(\mu^* \)-open but their intersection \(\{a\} \) is not so.

Theorem 2.6. Let \(\mu \) be a GT on a topological space \((X, \tau)\) and \(A \) be a \(\mu^* \)-open set such that \(A \subseteq B \subseteq cl(A) \). Then \(B \) is also a \(\mu^* \)-open set.

Proof. As \(A \) is \(\mu^* \)-open, there exists a \(\mu \)-open set \(U \) such that \(U \subseteq A \subseteq cl(U) \). Thus \(U \subseteq B \). Also \(cl(A) \subseteq cl(U) \Rightarrow B \subseteq cl(U) \). Thus \(U \subseteq B \subseteq cl(U) \). Thus \(B \) is \(\mu^* \)-open.

3. \(\mathcal{I}_\mu \)-open sets

Definition 3.1. Let \(\mu \) be a GT on an ideal topological space \((X, \tau, I)\). A subset \(A\) of \(X \) is called \(\mathcal{I}_\mu \)-open if there exists a \(\mu \)-open set \(U \) such that \(U \setminus A \in \mathcal{I} \) and \(A \setminus cl(U) \in \mathcal{I} \).

If \(A \in \mathcal{I} \), then \(A \) is an \(\mathcal{I}_\mu \)-open set and also by Theorem 2.2, every \(\mu^* \)-open set (hence every \(\mu \)-open set) is \(\mathcal{I}_\mu \)-open for any ideal \(\mathcal{I} \) on \(X \).

Example 3.2. (a) Let \(X = \{a, b, c\}, \mu = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}, \tau = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\} \) and \(\mathcal{I} = \{\emptyset, \{a\}, \{b\}, \{a, b\}\} \). Then \(\mu \) is a GT on the ideal topological space \((X, \tau, \mathcal{I})\). It can be verified that \(\{b\} \) is \(\mathcal{I}_\mu \)-open but not \(\mu^* \)-open.
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات