Comparison of Three-Dimensional T1-Weighted Magnetic Resonance and Contrast-Enhanced Ultrasound Plaque Images for Severe Stenosis of the Cervical Carotid Artery

Yasuyoshi Shimada, MD, PhD,* Kohki Oikawa, MD, PhD,* Shunrou Fujiwara, PhD,* Yasushi Ogasawara, MD, PhD,* Yuiko Sato, MD, PhD,* Shinsuke Narumi, MD, PhD,† Tadayoshi Kato, MD, PhD,† Kazumasa Oura, MD, PhD,† Yasuo Terayama, MD, PhD,† Makoto Sasaki, MD, PhD,‡ Kentaro Fujimoto, MD, PhD,* Jun Yoshida, MD, PhD,* and Kuniaki Ogasawara, MD, PhD*

Background and Purpose: Magnetic resonance (MR) and contrast-enhanced ultrasound assess characteristics and neovascularization, respectively, of the carotid plaque. The purpose of the present study was to clarify how findings of contrast-enhanced ultrasound plaque imaging are related to those of 3-dimensional (3D) fast spin echo (FSE) T1-weighted MR plaque imaging (WI) in severe stenosis (≥70%) of the cervical carotid artery. Methods: Fifty-three patients underwent 3D FSE T1-WI and contrast-enhanced ultrasound. For each patient, the averaged contrast ratio on MR (CRMR) was calculated by dividing the averaged internal carotid artery plaque signal intensity by the sternocleidomastoid muscle signal intensity; maximally enhanced intensities on the intraplaque and lumen time-intensity curves were obtained from contrast-enhanced ultrasound data, and the ratio of the maximal intensity of the intraplaque curve to that of the lumen curve was calculated and defined as contrast effect (CEUS). Results: A linear correlation (r = .702; P < .0001) was observed between CRMR and CEUS. Receiver operating characteristic curve analyses to evaluate the ability of the CEUS to differentiate each category of CRMR from the other 2 categories showed that the sensitivity was significantly lower for category II (1.30 ≤ CRMR ≤ 1.60) than for category I (CRMR < 1.30) or III (1.60 < CRMR). The CEUS was lower in plaques with higher CRMR than in those with lower CRMR in a subgroup of category III (P = .0196). Conclusion: Findings of contrast-enhanced ultrasound plaque imaging are related to those of 3D FSE T1-WI MR
Several investigators have also shown that a preoperative high-intensity finding of 3D FSE T1-WI MR plaque imaging in severe stenosis of the cervical carotid artery was significantly associated with the development of artery-to-artery emboli during the exposure of the carotid arteries in endarterectomy or during carotid artery stenting; preoperative high intensity in the carotid plaque on T1-WI was significantly associated with this development of emboli. Furthermore, a 3D fast spin echo (FSE) T1-WI technique capable of minimizing partial volume effects and motion artifacts and enhancing black-blood effects while maintaining T1-WI contrast has recently been adopted. A comparison of diagnostic accuracy between previous T1-WI sequences and 3D FSE T1-WI for carotid plaque characterization using pathological specimens excised during carotid endarterectomy showed that, because it provides improved contrast of lipid-rich plaques, 3D FSE T1-WI could characterize carotid plaque composition (e.g., hemorrhage, lipid-rich or necrotic core and fibrosis) more accurately than previous T1-WI sequences.

Contrast-enhanced ultrasound can generate real-time images of microbubbles as intravascular tracers that penetrate the carotid plaque from the vessel lumen or adventitial side through neovessels. Recent studies have demonstrated that visual or quantitative evaluation of the contrast effect (CEUS) using contrast-enhanced ultrasound enabled the histopathological assessment of neovascularization of the carotid plaque, suggesting that the high CEUS in plaque may reliably predict the presence of rich neovessels. Several investigators have also shown that a preoperative high CEUS in the carotid plaque on ultrasound was significantly associated with the development of artery-to-artery emboli during the exposure of the carotid arteries in endarterectomy or during carotid artery stenting.

The above findings suggested that both high intensity on T1-WI and the high CEUS on ultrasound in the carotid artery indicate the presence of unstable and vulnerable plaque, and investigating whether these two imaging modalities display the same pathological conditions of the carotid plaque is of interest. The purpose of the present study was thus to clarify how findings of contrast-enhanced ultrasound plaque imaging are related to those of 3D FSE T1-WI MR plaque imaging in severe stenosis of the cervical carotid artery.

Methods

Study Design

The present study was designed as a prospective, cross-sectional study. This protocol was reviewed and approved by the institutional ethics committee, and written, informed consent was obtained from patients or their next of kin prior to participation.

Patients

Patients with the following conditions were included in the present study: (1) internal carotid artery (ICA) stenosis of 70% or higher as per the North American Symptomatic Carotid Endarterectomy Trial on angiography/arterial catheterization; (2) useful preoperative residual function (modified Rankin Scale score, 0-2); and (3) no ipsilateral carotid territory ischemic symptoms or ipsilateral carotid territory ischemic symptoms more than 6 months before presentation (defined as asymptomatic) or ipsilateral carotid territory ischemic symptoms between 2 weeks and 6 months before presentation (defined as symptomatic). Patients with previous allergic reactions to eggs and those who did not undergo MR plaque imaging were excluded.

MR Plaque Imaging and Data Processing

Preoperative 3D FSE T1-WI of the affected carotid bifurcation was performed using a 1.5-T MR imaging scanner (Signa HDxt; GE Healthcare, Milwaukee, WI) and an 8-channel neurovascular coil under a previously described imaging protocol. In patients with stenosis of 70% or higher in bilateral internal carotid arteries, the symptomatic side for symptomatic patients and the side with the greater degree of stenosis for asymptomatic patients underwent data processing.

An investigator (blinded to other data) processed the 3D FSE T1-WI data using a free software package (OsirIX; Pixmeo, Geneva, Switzerland) as follows: The curved planar reformation image was generated parallel to the long axis of the common carotid artery and the ICA by manually setting and automatically connecting reference points in the center of the vessel lumen on each axial source image. On the curved planar reformation image...
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات