Accepted Manuscript

Plane wave formulas for spherical, complex and symplectic harmonics

H. De Bie, F. Sommen, M. Wutzig

PII: S0021-9045(17)30076-X
DOI: http://dx.doi.org/10.1016/j.jat.2017.07.001
Reference: YJATH 5157

To appear in: Journal of Approximation Theory

Received date: 19 December 2016
Revised date: 31 May 2017
Accepted date: 1 July 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Abstract

This paper is concerned with spherical harmonics, and two refinements thereof: complex harmonics and symplectic harmonics.

The reproducing kernels of the spherical and complex harmonics are explicitly given in terms of Gegenbauer or Jacobi polynomials. In the first part of the paper we determine the reproducing kernel for the space of symplectic harmonics, which is again expressible as a Jacobi polynomial of a suitable argument.

In the second part we find plane wave formulas for the reproducing kernels of the three types of harmonics, expressing them as suitable integrals over Stiefel manifolds. This is achieved using Pizzetti formulas that express the integrals in terms of differential operators.

Keywords: reproducing kernels, spherical harmonics, symplectic harmonics, Pizzetti formulas, plane waves, Stiefel manifolds

Mathematics Subject Classification: 32A50, 42B35

1 Introduction

In the study of harmonic analysis on the sphere (see e.g. [6]), spherical harmonics play a crucial role. Spherical harmonics of degree k are (the restrictions to the unit sphere of) harmonic polynomials of homogeneity k. In many applications, one is not so much interested in the harmonics themselves, but rather in their reproducing kernels. For spherical harmonics, the reproducing kernel is given in terms of Gegenbauer polynomials (see [16] and subsequent Theorem 2).

Several refinements of spherical harmonics have been introduced over the last decades. Koornwinder (see [9]) defined complex harmonics of degree (p, q) as spherical harmonics which are homogeneous of order p in the complexified variables and of order q in the complex conjugated variables. He determined the reproducing kernel of the complex harmonics in terms of a Jacobi polynomials (see also subsequent Theorem 4), which was the first step in establishing his celebrated addition formula for the Jacobi polynomials.

Recently, a further refinement of complex harmonics was introduced in [3]. They are called symplectic harmonics, as the space they span is invariant under the symplectic group. In addition to being (p, q) complex harmonics, symplectic harmonics have to be in the kernel of a certain twisted Euler operator (see the subsequent Definition 1).

Let us now describe the main results of our paper. First we determine the reproducing kernel of the
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات