Multiscale analysis of the Radiooxidative degradation of EVA/EPDM composites. ATH filler and dose rate effect

Ahmedou Sidi, Juliette Colombani, Jean-François Larché, Agnès Rivaton

PII: S0969-806X(16)30445-5
DOI: http://dx.doi.org/10.1016/j.radphyschem.2017.04.007
Reference: RPC7517

To appear in: Radiation Physics and Chemistry

Received date: 27 October 2016
Revised date: 9 March 2017
Accepted date: 14 April 2017

Cite this article as: Ahmedou Sidi, Juliette Colombani, Jean-François Larché and Agnès Rivaton, Multiscale analysis of the Radiooxidative degradation of EVA/EPDM composites. ATH filler and dose rate effect, Radiation Physics and Chemistry, http://dx.doi.org/10.1016/j.radphyschem.2017.04.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Multiscale analysis of the Radiooxidative degradation of EVA/EPDM composites. ATH filler and dose rate effect

Ahmedou Sidi1,2,3, Juliette Colombani1*, Jean-François Larché4, Agnès Rivaton2,3*

1Institut de Radioprotection et Sûreté Nucléaire - Laboratoire Expérimentation Environnement et Chimie IRSN/L2EC- CEN Cadarache - 13115 St-Paul-Lez-Durance - France
2Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, Equipe Photochimie, BP 10448, F-63000 Clermont-Ferrand, France
3CNRS, UMR 6296, ICCF, Equipe Photochimie, BP 80026, F-63171 Aubière, France
4Nexans Research Center, 29 rue du Pré Gaudry, 69353 Lyon Cedex 07, France
juliette.colombani@irsn.fr
agnes.rivaton@uca.fr
*Corresponding authors.

Abstract
This study is focused on the radiooxidative degradation of polymeric insulation of electric cables used in Nuclear Power Plants (NPPs). In order to investigate the degradation mechanisms of the insulation, model composites with ATH (Aluminium TriHydrate) filler and blends (without filler) based on a cross-linked mixture of EVA (Ethylene Vinyl Acetate) and EPDM (Ethylene Propylene Diene Monomer) were submitted to gamma-rays. In normal operating conditions of a NPP, the dose rate which electric cables are exposed to is around 0.1 Gy h-1. In this work, artificial accelerated ageing test process has been applied at a relatively low dose rate of 7 Gy h-1. Gamma-irradiations at higher dose rates typically used to accelerate the ageing, in the range 0.2 - 1 kGy h-1, were also carried out. The first part of the study is focused on irradiations performed at relatively low dose rate and is devoted to the highlighting of the radiooxidative degradation mechanisms of EVA/EPDM blend with and without ATH filler. Correlations between the evolutions of the chemical, morphological and mechanical/electrical properties of the materials occurring after the ageing process are presented. It is shown that the degradation process is governed by radical oxidation mechanism involving chain scissions leading to the formation of carboxylic acids as end-groups. One of the main effects of the ATH filler is the progressive loss of the mechanical properties of the composite upon radiooxidation whereas they are maintained in the case of the unfilled sample. Despite the oxidation of the polymer, no change in the electrical properties of the blend and of the composite could be observed.
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات