Simultaneous measurements of the thermal diffusivity and conductivity of thermal insulators using lock-in infrared thermography

Ángel Cifuentes a, b, Arantza Mendioroz a, Agustín Salazar a, c

a Departamento de Física Aplicada I, Escuela de Ingeniería de Bilbao, Universidad del País Vasco UPV/EHU, Plaza Ingeniero Torres Quevedo 1, 48013, Bilbao, Spain
b Instituto Politécnico Nacional, CICATA Legaria, Av. Legaria No. 694 Col. Irrigación, 11500, México D.F., Mexico

dedicated to the determination of the thermal transport properties of thermal insulators. Experiments performed on homogeneous polymers, on paper sheets and on extruded polystyrene foams confirm the validity of the method.

1. Introduction

The complete characterization of the thermal transport properties of a material requires the knowledge of two independent parameters: thermal diffusivity (D) and thermal conductivity (K) [1,2]. Whereas steady-state methods are used to measure the thermal conductivity, transient methods are sensitive to the coupling between the sample and the adjacent air to retrieve simultaneously the in-plane thermal diffusivity and conductivity of the sample. A sensitivity analysis demonstrates that the accuracy in the value of the thermal conductivity dramatically increases as it approaches the thermal conductivity of the air and/or when experiments are performed at very low modulation frequencies (<0.1 Hz). This means that this method is specially suited to determine the thermal transport properties of thermal insulators.

Optically excited lock-in infrared thermography provides fully non-contact methods to measure the thermal diffusivity of solids. However, measuring the thermal conductivity requires precise knowledge of the energy absorbed by the sample and of the absolute temperature rise. We have found that the temperature profile of poor thermal conductors illuminated by a modulated and focused laser beam is greatly affected by heat conduction to the surrounding air. In this work, we take advantage of the thermal coupling between the sample and the adjacent air to retrieve simultaneously the in-plane thermal diffusivity and conductivity of the sample. A sensitivity analysis demonstrates that the accuracy in the value of the thermal conductivity dramatically increases as it approaches the thermal conductivity of the air and/or when experiments are performed at very low modulation frequencies (<0.1 Hz). This means that this method is specially suited to determine the thermal transport properties of thermal insulators.

Experiments performed on homogeneous polymers, on paper sheets and on extruded polystyrene foams confirm the validity of the method.

© 2017 Elsevier Masson SAS. All rights reserved.
containing the laser power absorbed by the sample [8]: \(\eta P_0 / K \), where \(P_0 \) is the laser beam power and \(\eta \) is the fraction of the laser power absorbed by the sample. In most cases, with diffusive surfaces, \(\eta P_0 \) cannot be obtained accurately. On the other hand, measuring the absolute temperatures with an IR camera is difficult since it requires knowledge of the surface emissivity, the transparency of the sample to IR wavelengths, the background temperature, the atmosphere transmission, etc.

Alternatively, the thermal coupling between the sample and a liquid backing of known thermal properties can be used to measure both thermal properties simultaneously [9]. Following this idea, in this work we take advantage of the effect of the heat conduction to analyze the sensitivity of the surface temperature (amplitude and phase) to \(D \) and \(K \). We have obtained an analytical solution for the sample temperature that includes the effect of heat losses by convection and radiation, as well as by conduction to the surrounding air. We have analyzed the sensitivity of the surface temperature (amplitude and phase) to \(D \) and \(K \). We have confirmed that the surface temperature is very sensitive to \(D \), regardless the sample properties. The sensitivity to \(K \), instead, varies from zero for good thermal conductors and high frequencies to a high enough value for thermal insulators (\(K < 1 \, \text{Wm}^{-1} \, \text{K}^{-1} \)) and low frequencies (\(f < 0.1 \, \text{Hz} \)). This means that this method is specially adapted to measure the thermal properties of thermal insulators such as polymers, foams, fabrics, building materials, porous samples, etc. We have validated the method by performing low-frequency (5–120 mHz) lock-in IR thermography experiments on homogeneous polymers and on heterogeneous paper sheets and extruded polyethylene foams.

Before closing this introduction, let us mention that there are several methods to measure both thermal transport properties simultaneously. The Hot Wire was first introduced to deal with liquids [10], although it was then developed to work with solids [11,12]. However, it is mainly restricted to polymers, which are plates [13], but it needs a reference to obtain the thermal conductivity. The Hot Disk method is especially suited to measure the thermal diffusivity of plates [13], but it needs a reference to obtain the thermal conductivity. Recently, a “cylindrical three layers” method was introduced to measure \(D \) and \(K \) in thermal insulators [14], but it is a contact method which needs a high amount of material. The so-called Hot Disk method [15,16] is probably the most acknowledged one and it is commercially available. However, this is a contact technique that measures the through-thickness thermal transport properties. The method we are proposing here, instead, is fully noncontact and is addressed to the in-plane thermal properties. This means that it could be applied to study the thermal anisotropy from one single experiment. Moreover, as there is not restriction regarding the thickness of the sample, this method could be extended to thin sheets and filaments.

2. Theory

Let us consider an opaque and infinite slab of thickness \(L \), illuminated by a focused laser beam of power \(P_0 \) with a Gaussian profile of radius \(a \) (at 1/e²) and modulated at a frequency \(f (\omega = 2\pi f) \).
The sample is surrounded by air. The geometry of the problem is shown in Fig. 1. In what follows subscripts \(s \), \(g_1 \) and \(g_2 \) stand for sample, gas at the illuminated surface and gas at the rear surface, respectively. Due to the cylindrical symmetry, the oscillating component of the temperature in each medium can be written in the Hankel space as

\[
T_{g1}(r, z) = \int_0^\infty \delta J_0(\delta r) e^{-\delta^2 z} d\delta, \quad (1a)
\]

\[
T_s(r, z) = \int_0^\infty \delta J_0(\delta r) e^{-\beta r^2} \left[B e^{\delta z} + C e^{-\beta z} \right] d\delta, \quad (1b)
\]

\[
T_{g2}(r, z) = \int_0^\infty \delta J_0(\delta r) e^{\beta (z+1)} d\delta, \quad (1c)
\]

where \(J_0 \) is the Bessel function of the zero order and \(\delta^2 = \delta^2 + i\omega / D \). Constants \(A, B, C, E \) are determined from the following boundary conditions

\[
T_{g1}(z = 0) = T_s(z = 0), \quad (2a)
\]

\[
T_{g2}(z = -L) = T_s(z = -L), \quad (2b)
\]

\[
-K_s \frac{\partial T_s}{\partial z} \bigg|_{z=0} = -K_g \frac{\partial T_{g1}}{\partial z} \bigg|_{z=0} + h T_s \bigg|_{z=0}
\]

\[
- \frac{P_0}{2\pi} \int_0^\infty \delta J_0(\delta r) e^{-\delta z} / \delta d\delta,
\]

\[
-K_s \frac{\partial T_s}{\partial z} \bigg|_{z=-L} = -K_g \frac{\partial T_{g2}}{\partial z} \bigg|_{z=-L} - h T_s \bigg|_{z=-L}, \quad (2d)
\]

where \(h \) is the combined heat transfer coefficient by convection and radiation, for which we assume the same value at both surfaces. As the surface temperature rise is small the heat rate dissipated from the surface can be regarded as a linear function of the temperature. The last term in Eq. (2c) is the Hankel transform of the heating power distribution of a Gaussian laser beam \(\eta (P_0 / \pi a^2) e^{-2z^2 / a^2} \), where \(\eta \) is the fraction of the laser power absorbed by the sample.

By substituting Eq. (1) into Eq. (2), the four constants are determined and the resulting sample temperature writes

\[
T_s(r, z) = \frac{\eta P_0}{4\pi} \int_0^\infty \delta J_0(\delta r) e^{-\delta z} / \delta \left(K_s \delta_s + K_g \delta_g + h \right) e^{\delta z} + \left(K_s \delta_s - K_g \delta_g - h \right) e^{-\delta z} - \delta \delta /
\]

\[
\left(K_s \delta_s + K_g \delta_g + h \right) e^{\delta z} - \left(K_s \delta_s - K_g \delta_g - h \right) e^{-\delta z}.
\]
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات