Analysis and compensation of reference frequency mismatch in multiple-frequency feedforward active noise and vibration control system

Jinxin Liu a,b, Xuefeng Chen a,b,n, Liangdong Yang a,b, Jiawei Gao a,b, Xingwu Zhang a,b

a State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710054, PR China
b School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China

A R T I C L E I N F O

Article history:
Received 6 July 2016
Received in revised form 1 June 2017
Accepted 5 June 2017
Handling Editor: L.C. Tham

Keywords:
Active noise and vibration control (ANVC)
Multiple-frequency narrowband FXLMS
Reference frequency mismatch
Adaptive notch filter
Adaptive sinusoidal oscillator

A B S T R A C T

In the field of active noise and vibration control (ANVC), a considerable part of unwelcome noise and vibration is resulted from rotational machines, making the spectrum of response signal multiple-frequency. Narrowband filtered-x least mean square (NFXLMS) is a very popular algorithm to suppress such noise and vibration. It has good performance since a priori-knowledge of fundamental frequency of the noise source (called reference frequency) is adopted. However, if the priori-knowledge is inaccurate, the control performance will be dramatically degraded. This phenomenon is called reference frequency mismatch (RFM). In this paper, a novel narrowband ANVC algorithm with orthogonal pair-wise reference frequency regulator is proposed to compensate for the RFM problem. Firstly, the RFM phenomenon in traditional NFXLMS is closely investigated both analytically and numerically. The results show that RFM changes the parameter estimation problem of the adaptive controller into a parameter tracking problem. Then, adaptive sinusoidal oscillators with output rectification are introduced as the reference frequency regulator to compensate for the RFM problem. The simulation results show that the proposed algorithm can dramatically suppress the multiple-frequency noise and vibration with an improved convergence rate whether or not there is RFM. Finally, case studies using experimental data are conducted under the condition of none, small and large RFM. The shaft radial run-out signal of a rotor test-platform is applied to simulate the primary noise, and an IIR model identified from a real steel structure is applied to simulate the secondary path. The results further verify the robustness and effectiveness of the proposed algorithm.

© 2017 Published by Elsevier Ltd.

1. Introduction

In the fields of aircraft, watercraft, automobile, machinery, etc., the suppression of unwelcome noise and vibration has drawn much attention and effort from researchers and engineers, since over-vibrations of machine may deteriorate working...
The basic idea of ANVC is to generate an equal-but-opposite secondary noise or vibration to counteract the primary one. There are two main topological structures for ANVC, i.e., feedback and feedforward, where the feedforward structure takes priori knowledge (the reference signal) into consideration and will generally have a better performance [11]. The most famous feedforward algorithm for ANVC is the filtered-x least mean square (FXLMS) algorithm, whose reference signals are filtered by a secondary path model to compensate for the influence of the secondary path. Narrowband FXLMS (NFXLMS) is a variant of FXLMS algorithm [4,11], which takes more priori knowledge (i.e., the primary noise is narrowband) into account. Therefore, its controller can be simplified and the performance can be further improved by using non-vibrational/non-acoustic reference sensor to avoid the “feedback effect” [11]. The narrowband assumption is tenable, since a considerable part of unwanted noise and vibration is generated by rotational machines in real application. As a consequence, the study of narrowband noise and vibration control with applications is very active. For example, there is control on finite element (FE) plant [3], control on real-life plant [12] or even control in noise and vibration reshaping application [13].

The most commonly used parallel structure of NFXLMS is shown in Fig. 1. For each frequency component, two orthogonal sinusoids are generated as base signals. The controller is an adaptive linear combiner (ALC) of those two sinusoids. The least mean square (LMS) algorithm estimates the best coefficients of the ALC by minimizing the squared error signal. The sinusoids generator is one of the most important parts of the NFXLMS algorithm. It can be achieved by lookup table technique or digital oscillator, in which digital oscillator method requires fewer computations [11,14]. Among different types of digital oscillators, the “biquad” form (direct form) oscillator requires the least computations (one multiplication) with equal (constant) amplitude output [14]. Since the “biquad” form oscillator has no quadrature output, two oscillators (cosine and sine) are required for NFXLMS algorithm.

Traditional NFXLMS algorithm has very good performance for periodic noise and vibration reduction if the frequency of digital oscillators (called reference frequency) is exactly equal to that of the noise source. Otherwise, the control performance will be dramatically degraded. This phenomenon is called reference frequency mismatch (RFM) [1]. The RFM phenomenon indeed exists in reality, due to aging and fatigue accumulation of the reference sensor.

The influence of RFM on NFXLMS can be explained in frequency domain. The closed-loop transfer function of the...
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات