A comparison between preterm and full-term infants’ preference for faces

Silvana A. Pereira, Antônio Pereira Junior, Marcelo F. da Costa, Margareth de V. Monteiro, Valéria A. de Almeida, Gentil G. da Fonseca Filho, Nívia Arrais, Francesca Simion

Original Article

Objective: Visual preference for faces at birth is the product of a multimodal sensory experience experienced by the fetus even during the gestational period. The ability to recognize faces allows an ecologically advantageous interaction with the social environment. However, perinatal events such as premature birth, may adversely affect the adequate development of this capacity. In this study, we evaluated the preference for facial stimuli in preterm infants within the first few hours after birth.

Methods: This is a cross-sectional observational study of 59 newborns, 28 preterm and 31 full-term infants. The babies were assessed in the first hours of life, with two white boards in the shape of a head and neck: one with the drawing of a face similar to the human face (natural face), and one with the drawing of misaligned eyes, mouth and nose (distorted face). After the newborn fixated the eyes on the presented stimulus, it was slowly moved along the visual field. The recognition of the stimulus was considered present when the baby had eye or head movements toward the stimulus.

Results: The preterm infants, in addition to showing a lower occurrence of orientation movements for both stimuli, on average (1.8 ± 1.1 to natural faces and 2.0 ± 1.2 for distorted ones) also showed no preference for any of them (p = 0.35). Full-term newborns showed a different behavior, in which they showed a preference for natural faces (p = 0.002) and a higher number of orientations for the stimulus, for both natural (3.2 ± 0.8) and distorted faces (2.5 ± 0.9).

KEYWORDS
- Model of visual recognition
- Visual perception
- Newborn
- Preterm infant
- Full-term infant
Introduction

Despite the visual cortical area immaturity and the consequent limitation in visual skills, newborns have an innate preference for visual stimuli that resemble faces. This ability is essential to guide the child’s interactions in the social environment.¹

Unlike most other objects, faces are processed in a holistic or configural manner in the visual system and are processed in their entirety, while other objects are processed as aggregates of independent elements.² This is probably due to the fact that many socially relevant information sources depend on the integration from several facial regions, such as judgments of facial expressions and intentionality.²

The configural processing of faces depends on a subcortical system known as CONSPEC, which operates since birth and is sensitive to basic information on the visual characteristics of faces of the same species.³ This system guides the preference for facial patterns (eyes aligned above the nose and mouth) from high contrasts up to the first months of life,⁴ before a second system, termed CONLERN, completes its maturation.³,⁴ The development of the CONLERN system depends on the visual experience with human faces.³,⁴,⁷ These two systems interact during the postnatal development of the visual system.⁸ The CONSPEC guides the development of CONLERN;⁹ any impairment in its function may affect cortical specialization for faces and, thus, adversely influence the subsequent processing of social stimuli.⁴

Experiments that investigate these two systems in full-term newborns with gestational age >40 weeks are widely found in the literature.¹,⁴,⁵,⁸,¹⁰ However, although preterm infants are capable of completing all elements of a visual assessment protocol, including those with complex answers,⁶,¹¹ no study has assessed the preference for faces in preterm infants in the first few hours of life.

Some studies¹²–¹⁴ demonstrated an association between preterm birth and several neurocognitive disorders, associated in one way or another to the processing of facial stimuli, such as autism¹²,¹³ and prosopagnosia,¹⁴ the inability to recognize faces.

An orientation by social stimuli may be a critical control point for predicting the trajectory of social cognitive development.¹⁵

However, a hypothesis discussed in the present study is that the orientation by social stimuli at birth may be a product of a multimodal sensory experience that the fetus can...
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات