A hybrid energy storage system with optimized operating strategy for mitigating wind power fluctuations

Yi Zhang, Yujie Xu, Huan Guo, Xinjing Zhang, Cong Guo, Haisheng Chen

PII: S0960-1481(18)30202-7
DOI: 10.1016/j.renene.2018.02.058
Reference: RENE 9789
To appear in: Renewable Energy

Received Date: 26 May 2017
Revised Date: 24 November 2017
Accepted Date: 11 February 2018

Please cite this article as: Yi Zhang, Yujie Xu, Huan Guo, Xinjing Zhang, Cong Guo, Haisheng Chen, A hybrid energy storage system with optimized operating strategy for mitigating wind power fluctuations, Renewable Energy (2018), doi: 10.1016/j.renene.2018.02.058

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
A hybrid energy storage system with optimized operating strategy for mitigating wind power fluctuations

Yi Zhanga,b, Yujie Xua, Huan Guoa, Xinjing Zhanga, Cong Guoa, Haisheng Chena, *

a Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
b University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

A novel method based on hybrid energy storage system (HESS), composed of adiabatic compressed air energy storage (A-CAES) and flywheel energy storage system (FESS), to mitigate wind power fluctuations and augment wind power penetration is proposed in this paper. Wind power fluctuates in different frequencies, mainly divided into low and high frequency, which can be coped with by A-CAES and FESS respectively. To fit with low frequency fluctuation exhibiting large magnitude, A-CAES with multi-operating strategies is first proposed to widen operational ranges. Mathematical model of key components’ off-design performance is established. For a 49.5 MW wind farm in China, design and optimization of HESS are comprehensively investigated. More specifically, the selection of A-CAES system’s key components, such as compressor and expander, and parameters of them are specified as well as the parameters of FESS. The key operating parameters of the HESS, when integrated with wind plant, are analyzed and the characteristics are revealed. The results indicate that by HESS, wind power with fluctuation within 0-49.5 MW (average 25.55 MW) can be stabilized to a steady electrical power output of 24.18 MW. The loss of wind power is 6.6%, far less than the wind power rejection rate 17.1% in China.

Keywords: Wind power, Compressed air energy storage, Flywheel energy storage, Optimum design, Wind power rejection rate

Nomenclature

Abbreviations

\begin{itemize}
\item A-CAES \quad adiabatic compressed air energy storage
\item FESS \quad flywheel energy storage system
\item AVE \quad average wind power
\item HESS \quad hybrid energy storage system
\item CAR \quad compressed air reservoir
\item SM \quad surge margin
\item ESS \quad energy storage system
\item TSM \quad thermal storage medium
\end{itemize}

Symbols

\begin{itemize}
\item \(A \) \quad surface area of compressed air reservoir, m\(^2\)
\item \(M \) \quad mass, kg
\item \(c_p \) \quad constant pressure specific heat, J/kg/K
\item \(\dot{n} \) \quad reduced rotating speed
\end{itemize}

* Corresponding author. Tel.: +86(10)82543148
Email address: chen_hs@mail.etp.ac.cn
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات