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a b s t r a c t

This paper studies the dynamics of the spatially-heterogeneous diffusive Lotka–
Volterra competing species model. It focuses special attention in ascertaining the
linear stability and multiplicity of the coexistence steady states. One of our main
findings establishes that, as soon as any steady-state solution of the non-spatial
model is linearly unstable somewhere in the inhabiting territory, Ω , any steady
state of the spatial counterpart perturbing from it therein (as the diffusion rates,
d1, d2, move away from 0) must be linearly unstable. From this general principle
one can derive a number of rather astonishing consequences, as the multiplicity of
the coexistence steady states when the non-spatial model exhibits founder control
competition somewhere in Ω , say Ωbi, even if Ωbi is negligible empirically. Actually,
this is the first available multiplicity result for small diffusion rates. Finally, based
on a celebrated identity by M. Picone (1910), we are able to establish a new, rather
striking, uniqueness result valid for general spatially heterogeneous models.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we consider the Lotka–Volterra competition reaction–diffusion heterogeneous system⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
+ d1L1u = λ(x)u− a(x)u2 − b(x)uv

∂v

∂t
+ d2L2v = µ(x)v − d(x)v2 − c(x)uv

in Ω × (0,+∞),

B1u = B2v = 0 on ∂Ω × (0,+∞),
u(·, 0) = u0 > 0, v(·, 0) = v0 > 0 in Ω ,

(1.1)
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as well as its associated elliptic counterpart⎧⎨⎩d1L1u = λ(x)u− a(x)u2 − b(x)uv
d2L2v = µ(x)v − d(x)v2 − c(x)uv in Ω ,

B1u = B2v = 0 on ∂Ω ,
(1.2)

whose solutions are the steady states of the evolutionary model (1.1). In this model, Ω is a bounded domain
of RN with boundary, ∂Ω , of class C2, and Li, i = 1, 2, are two self-adjoint uniformly elliptic operators in
Ω of the type

Li = −div(Ai∇·) + Ci, i = 1, 2, (1.3)

with Ai ∈ Msym
N (C2(Ω̄)) and Ci ∈ C(Ω̄). Given any Banach space, X, we are denoting by MN (X) the set

of matrices of order N with entries in X. Naturally, Msym
N (X) stands for the subset of MN (X) consisting

of all the symmetric matrices. As far as concerns ∂Ω , it is throughout assumed to be a (N − 1)-dimensional
manifold of class C2 consisting, for each i ∈ {1, 2}, of finitely many connected components of class C2

Γ i,jD , Γ i,kR , 1 ≤ j ≤ niD, 1 ≤ k ≤ niR,

for some integers niD, niR ≥ 0. By the definition of component, they must be disjoint (see, e.g., J. Munkres [30])
and each of them must be, simultaneously, a relatively open and closed subset of ∂Ω , because ∂Ω is a compact
manifold without boundary. Some, or several, of these components might be empty, of course. We denote by

Γ iD =
ni

D⋃
j=1

Γ i,jD , Γ iR =
ni

R⋃
j=1

Γ i,jR , i = 1, 2,

the Dirichlet and Robin portions of

∂Ω = Γ iD ∪ Γ iR, i = 1, 2.

Associated with these decompositions of ∂Ω , there are two boundary operators Bi, i = 1, 2, defined by

Bih =
{

Dih := h in Γ iD,

Rih := ⟨n, Ai∇h⟩ + βih in Γ iR,
for every h ∈ W 2,p(Ω), p > N, (1.4)

where βi ∈ C(∂Ω) and n stands for the outward normal vector field along ∂Ω . Thus, for each i = 1, 2, Γ iD
and Γ iR are the portions of the edges of the inhabiting territory, ∂Ω , where the corresponding species, u,
or v, obeys a boundary condition of Dirichlet (D) or Robin (R) type, respectively. In particular, we may
denote Bi = D when Γ iD = ∂Ω . In most of this paper, we are assuming that λ, µ, a, b, c, d ∈ C(Ω̄) satisfy

b(x) > 0 and c(x) > 0 for all x ∈ Ω , min
Ω̄

a > 0, min
Ω̄

d > 0, (1.5)

though in Sections 2–4 the hypothesis on b and c can be relaxed to b, c ≥ 0 in Ω̄ .
Throughout this paper, for any given function h ∈ C(Ω), we shall denote h+ := max{h, 0}. It is said that

h is positive, h > 0 or h ⪈ 0 (in Ω), if h ≥ 0 with h ̸= 0. Also, for any given h ∈ C1(Ω̄), it is said that h is
strongly positive (in Ω), h ≫ 0, if it satisfies

h(x) > 0 for all x ∈ Ω and ∂h

∂n (x) := ⟨n(x),∇h(x)⟩ < 0 for all x ∈ h−1(0) ∩ ∂Ω .

Except for the general existence results of Chapter 7 of [25], most of the available literature on Lotka–
Volterra competing species models dealt with the very special cases when either Γ 1

R = Γ 2
R = ∅, or
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