A composite score associated with spontaneous operational tolerance in kidney transplant recipients

Richard Danger¹,², Mélanie Chesneau¹,², Chloé Paul¹,², Pierrick Guérif¹,², Maxim Durand¹,², Kenneth A. Newell³, Sai Kanaparthi⁴, Laurence A. Turka⁵, Jean-Paul Soulillou¹,², Rémi Houlgatte⁶,⁷, Magali Giral¹,²,⁸,⁹, Gérard Ramstein¹⁰ and Sophie Brouard¹,²,⁹

¹Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France; ²Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France; ³Department of Surgery, Emory University, Atlanta, Georgia, USA; ⁴Immune Tolerance Network, Bethesda, Maryland, USA; ⁵Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; ⁶INSERM UMR 954, Nancy, France; ⁷CHU de Nancy, DRCL, Nancy, France; ⁸Université de Nantes, Faculté de Médecine, Nantes, France; ⁹CIC Biotherapy, CHU Nantes, Nantes, France; and ¹⁰LINA DUKe, UMR 6241, Université de Nantes, Ecole des Mines de Nantes and CNRS, Nantes, France

New challenges in renal transplantation include using biological information to devise a useful clinical test for discerning high- and low-risk patients for individual therapy and ascertaining the best combination and appropriate dosages of drugs. Based on a 20-gene signature from a microarray meta-analysis performed on 46 operationally tolerant patients and 266 renal transplant recipients with stable function, we applied the sparse Bolasso methodology to identify a minimal and robust combination of six genes and two demographic parameters associated with operational tolerance. This composite score of operational tolerance discriminated operationally tolerant patients with an area under the curve of 0.97 (95% confidence interval 0.94–1.00). The score was not influenced by immunosuppressive treatment, center of origin, donor type, or post-transplant lymphoproliferative disorder history of the patients. This composite score of operational tolerance was significantly associated with both de novo anti-HLA antibodies and tolerance loss. It was validated by quantitative polymerase chain reaction using independent samples and demonstrated specificity toward a model of tolerance induction. Thus, our score would allow clinicians to improve follow-up of patients, paving the way for individual therapy.

KEYWORDS: biomarker; gene expression; graft survival; operational tolerance; renal transplantation

Copyright © 2017, International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
has been established,32,33 we need to demonstrate their safety and reliability for immunosuppression minimization and follow-up of transplant recipients.

Herein, we identified and validated a composite score that allows TOL patients to be identified with excellent accuracy, representing a potential predictive score of tolerance applicable in clinical practice in order to improve follow-up of renal transplant recipients.

RESULTS

Clinical parameters associated with operational tolerance

From the meta-dataset that we previously described,21 clinical data from Nantes, Indices of Tolerance (IOT), and Immune Tolerance Network (ITN) databases were used to identify 312 nonredundant patients: 46 individual TOL patients of 96 TOL samples and 266 STA patients of 311 STA samples (Supplementary Table S1). To construct a predictor score of operational tolerance easily applicable and reproducible in various centers, we selected intrinsic and nonvariant patient-related clinical parameters, excluding parameters that may depend on technique and transplant center. Due to missing data, likely reflecting patient noncompliance, only parameters available for at least half of the TOL patients were used. Four of these parameters associated with operational tolerance status ($P < 0.20$) were selected: age at transplantation ($P < 0.0001$), age at testing ($P = 0.176$), number of HLA mismatches ($P < 0.0001$), and donor sex ($P = 0.154$) (Supplementary Table S2).

Composite score of operational tolerance

Expression levels of the 20 genes that were previously reported as the differential between TOL and STA patients21 were confirmed in this set of 312 patients (46 TOL and 266 STA patients; $P < 0.0001$). To identify the most discriminative combination in the 20 genes and the 4 clinical parameters, we used the Bolasso method,34 which is a least absolute shrinkage and selection operator regression analysis combined with bootstrap resampling (10,000 times) followed by multiple testing (false discovery rate <0.05).15

We identified a combination of 6 genes ($AKR1C3$ [aldo-keto reductase family 1], $CD40$, $CTLA4$ [cytotoxic T-lymphocyte-associated protein 4], $ID3$ [inhibitor of DNA binding 3], $MZB1$ [marginal zone B and B1 cell–specific protein], $TCL1A$ [T-cell leukemia/lymphoma protein 1A]), and 2 clinical parameters (age at testing and age at transplantation) (Figure 1a and b) that enabled us to establish a composite score, the composite score of operational tolerance (cSoT), discriminating TOL and STA patients (42 TOL patients, 189 STA patients, $P < 0.0001$) with an area under the curve (AUC) of 0.973 (95% confidence interval [CI] 0.939–1.00), with negative and positive predictive values of 0.989 and 0.800, respectively (Figure 1c, d). The consistency of the 8 selected parameters was validated by a 10-fold cross-validation repeated 100 times. The 8 selected parameters were present in at least 80% of the 1000 generated models (Figure 1a). The cSoT robustness was validated by a 10-fold cross-validation repeated 100 times with a mean AUC for test sets of 0.967 (95% CI 0.966–0.968). The cSoT discriminated TOL patients from STA patients significantly better than each parameter alone ($P < 0.0001$, Figure 1c) and better than graft function (AUC = 0.615). The cSoT represents the best combination of parameters compared with the combination of the 6 genes only as observed by the goodness of fit of these scores ($P < 0.0001$ in a Fisher test based on the residual sum of squares). Inherent in this composite score and due to the Lasso method, cSoT equation coefficients provide biased and limited information to interpret parameters contribution.36,37 However, removing either the 2 age parameters or the 6 genes decreases the AUC values compared with the cSoT (AUC = 0.947 and 0.828, $P = 0.10$ and 0.00031, respectively), and gene expression contributes more significantly than demographic parameters ($P = 0.011$, Supplementary Figure S1). A final cross-validation was then performed on a recent microarray dataset composed of 16 TOL patients and 9 patients with chronic allograft nephropathy.15 The combination of the 6 genes allowed a significant discrimination of the TOL patients from the others (AUC = 0.825, 95% CI 0.636–1.014; $P = 0.0061$).

Center of origin, posttransplantation lymphoproliferative disorder, donor type, and immunosuppressive regimen do not influence the cSoT

Despite the heterogeneity of TOL samples obtained from multiple sites (Nantes, IOT, and ITN) and different blood collection methods,17,24,28,39,40 the cSoT is not influenced or associated with patient origin ($P = 0.13$; Figure 2a). Our analysis failed to reveal an association with a history of a posttransplantation lymphoproliferative disorder, the main intentional reason for cessation of immunosuppression ($N = 4, P = 0.19$, Figure 2b). Despite an imbalance of donor type (living vs. nonliving donor) in our meta-dataset (Supplementary Table S1), scores were not different between TOL samples receiving organs from living donors or nonliving donors ($P = 0.58$; Figure 2c). With nonliving donors only, the cSoT is still able to differentiate TOL patients from STA patients with a very good AUC (AUC = 0.977, 95% CI 0.9559–0.9975, 15 TOL patients, 189 STA patients). Because the 2 patient groups used to create the cSoT differed in immunosuppression status (STA patients are under immunosuppression and TOL patients received no more immunosuppression), we assessed whether immunosuppression could affect the cSoT values. Regarding the TOL patients, the previous immunosuppression regimen before its withdrawal, including cyclosporine A (CsA), mycophenolic acid, and azathioprine did not influence cSoT values ($P = 0.74, 0.81$, and 0.61, respectively; 29 TOL patients, Figure 2d).

Similarly, in the STA population ($N = 189$), cSoT was not influenced by current calcineurin-based immunosuppression regimen (i.e., CsA or tacrolimus [$P = 0.64$], corticosteroids [$P = 0.42$], and antimetabolite agents [$P = 0.66$]) (Figure 2c). Finally, we tested the effect of immunosuppression on the cSoT in 2 independent cohorts of STA patients41,42: 1 cohort...
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات