Accepted Manuscript

Targeting Chromatin Aging - The Epigenetic Impact of Longevity-Associated Interventions

Adam Field, Peter D. Adams

PII: S0531-5565(16)30583-6
Reference: EXG 9954

To appear in: Experimental Gerontology

Received date: 28 October 2016
Revised date: 5 December 2016
Accepted date: 10 December 2016

Please cite this article as: Field, Adam, Adams, Peter D., Targeting Chromatin Aging - The Epigenetic Impact of Longevity-Associated Interventions, Experimental Gerontology (2016), doi:10.1016/j.exger.2016.12.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
“Targeting Chromatin Aging - The Epigenetic Impact of Longevity-Associated Interventions”

Adam Field, Peter D Adams

Glasgow G61 1BD
United Kingdom

E-mail: a.field.1@research.gla.ac.uk

0.0 Abstract

A rapidly growing body of evidence has shown that chromatin undergoes radical alterations as an organism ages, but how these changes relate to aging itself is an open question. It is likely that these processes contribute to genomic instability and loss of transcriptional fidelity, which in turn drives deleterious age-related phenotypes. Interventions associated with increased healthspan and longevity such as reduced insulin / IGF signalling (IIS), inhibition of mTOR and energy depletion resulting in SIRT1 / AMPK activation, all have beneficial effects which ameliorate multiple facets of age-associated decline. The impact of these interventions on the epigenome is less certain. In this review we highlight the potential of these interventions to act directly upon the epigenome and promote a youthful chromatin landscape, maintaining genetic and transcriptional memory throughout the lifecourse. We propose that this is a fundamental mechanism through which these interventions are able to curtail the incidence of age-related disease. By revisiting these well characterised interventions, we may be able to identify targetable effectors of chromatin function and use this knowledge to enhance healthspan and longevity in human populations through the measured application of dietary and small molecule interventions.

Keywords

Epigenetics; Aging; Histone; Methylation; Longevity; Chromatin; Rapamycin; Insulin; Calorie Restriction; Healthspan; mTOR; AMPK; SIRT1; IGF;
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات