Research on an imaging spectropolarimeter

Xuling Lina,b,*, Haibo Zhaoa,b, Zheng Wanga,b

a Beijing Institute of Space Mechanics and Electricity, CAST, Beijing, 100094, PR China
b Key Laboratory for Advanced Optical Remote Sensing Technology of Beijing, 100094, PR China

1. Introduction

With the continuous increase of application requirement, it is very important for remote sensing technology to improve capabilities of objective analysis and expand the information dimensions. Imaging spectropolarimeter provide us with an effective means to respond to existing requirements \cite{1}. In addition to the information obtained by hyperspectral imaging technology alone, polarization detection provide Stokes vector, degree of polarization and angle of polarization information, it can expand the information dimensions of the object, and has the potential for improving target contrast and providing orientation information of difference target \cite{2–5}.

In this paper, a method of hyperspectral polarization imaging technique is discussed, which is based on static intensity modulation and spatially spectral modulation. A experimental device has been developed which is operated in the visible wavelength to display the potential of this technique for future space-based systems. The experiment setup and some experimental results are presented in this paper.

2. Theoretical background

The schematic of the imaging spectropolarimeter can be seen in Fig. 1. The light radiating from the objects is collimated by the fore telescope optical system and then modulated by two retarders and one polarizer, the light is linearly polarized by the first polarizer and is then split by the Wollaston prism, which acts as a polarizing beam splitter, producing two orthogonally polarized ray. Successively, the analyzer P2 is placed at the output of the Wollaston prism to convert the two component rays into a uniform state. Finally, imaging optical system images the interferogram onto a detector. The hypespectral and the polarization information of the object can be obtained by some data processing.
The spectral polarization state of the broadband light under measurement can be expressed in terms of the spectrally resolved Stokes parameters $S_0(\sigma), S_1(\sigma), S_2(\sigma), S_3(\sigma)$, in which each of four elements depends on wavenumber σ, the reciprocal of wavelength λ. The phase retardations of R1 and R2 can be written as

$$\phi_1 = 2\pi B(\sigma)D_1\sigma$$
$$\phi_2 = 2\pi B(\sigma)D_2\sigma$$

where σ is the wavenumber, $B(\sigma)$ is the birefringence of the retarder’s medium, and D_1 and D_2 are the aforementioned retarder thicknesses.

Using the Mueller calculus to model the propagation of polarization states through the system, the output stokes vector of the light is therefore given by [6–8]:

$$\begin{align*}
(S_{out}) &= \frac{1}{2} \begin{pmatrix}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \cos \phi_2 (\sigma) & 0 & -\sin \phi_2 (\sigma) \\
0 & 0 & 1 & 0 \\
0 & \sin \phi_2 (\sigma) & 0 & \cos \phi_2 (\sigma)
\end{pmatrix} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos \phi_1 (\sigma) & \sin \phi_1 (\sigma) \\
0 & 0 & -\sin \phi_1 (\sigma) & \cos \phi_1 (\sigma)
\end{pmatrix} \begin{pmatrix}
S_0 (\sigma) \\
S_1 (\sigma) \\
S_2 (\sigma) \\
S_3 (\sigma)
\end{pmatrix} \\
&= \frac{1}{2} \begin{pmatrix}
s_0 + s_1 \cos(\phi_1) + s_2 \sin(\phi_1) \sin(\phi_2) - s_3 \cos(\phi_1) \sin(\phi_2) \\
s_0 + s_1 \cos(\phi_1) + s_2 \sin(\phi_1) \sin(\phi_2) - s_3 \cos(\phi_1) \sin(\phi_2) \\
0 \\
0
\end{pmatrix}
\end{align*}$$

Because the sensor is only responds to S_0, which corresponds to the total intensity of the light. This recorded intensity is a function of wavenumber, this yields:

$$I(\sigma) = \frac{1}{2} s_0 + \frac{1}{2} s_1 \cos(\phi_2) + \frac{1}{2} s_2 \sin(\phi_1) \sin(\phi_2) - \frac{1}{2} s_3 \cos(\phi_1) \sin(\phi_2)$$
دریافت فوری
متن کامل مقاله
امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات