
On the nonstationarity of the exchange rate process

Takaaki Ohnishi a,b,⁎, Hideki Takayasu c, Takatoshi Ito b, Yuko Hashimoto d,
Tsutomu Watanabe a,e, Misako Takayasu f

a The Canon Institute for Global Studies, 11F, Shin-Marunouchi Bldg., 1-5-1, Marunouchi, Chiyoda-Ku, Tokyo 100-6511, Japan
b Graduate School of Economics, University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
c Sony Computer Science Laboratories, 3-14-13 Higashigotanda, Shinagawa-ku, Tokyo, 141-0022, Japan
d Statistics Department, International Monetary Fund, 700 19th Street, N.W., Washington, D.C. 20431, United States
e Institute of Economic Research, Hitotsubashi University, 2-1 Naka, Kunitachi-city, Tokyo 186-8603, Japan
f Department of Computational Intelligence and Systems Science, Interdisciplinary, Graduate School of Science and Engineering,
Tokyo Institute of Technology, 4259-G3-52, Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan

a b s t r a c ta r t i c l e i n f o

Article history:
Received 15 November 2010
Received in revised form 10 May 2011
Accepted 30 June 2011
Available online 15 July 2011

Keywords:
Econophysics
Foreign exchange market
Strict stationarity
Nonstationarity
Two-sample Kolmogorov–Smirnov test
Pearson's chi-square test
Poisson process

We empirically investigate the nonstationarity property of the USD–JPY exchange rate by using a high frequency
data set spanning 8 years. We perform a statistical test of strict stationarity based on the two-sample
Kolmogorov–Smirnov test for the absolute price changes, and Pearson's chi square test for the number of
successive price changes in the same direction, and find statistically significant evidence of nonstationarity.
Further, we study the recurrence intervals between the days in which nonstationarity occurs and find that the
distribution of recurrence intervals is well approximated by an exponential distribution. In addition, we find that
the mean conditional recurrence interval hTjT0i is independent of the previous recurrence interval T0. These
findings indicate that the recurrence intervals are characterized by a Poisson process. We interpret this
observation as a reflection of the Poisson property regarding the arrival of news.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In econophysics, financial time series data have been extensively
investigated using a wide variety of methods. These studies tend to
assume, explicitly or implicitly, that a time series is stationary, since
stationarity is a requirement for most of the mathematical theories
underlying time series analysis. However, despite its nearly universal
assumption, few previous studies seek to test stationarity in a reliable
manner (Tóthla, et al., 2010).

For low-frequency financial data (i.e., monthly or daily data), a
number of procedures to test stationarity have been advocated and
applied to various time series processes in econometrics. Most of
them focus on the first two moments of a process; in other words,
they test covariance stationarity. These tests work well for normally
distributed random variables. However, for high-frequency financial
data such as tick-by-tick data, it is well known that price change
distributions are fat-tailed and substantially deviate from a normal

distribution. These fat-tailed distributions cannot be dealt with by the
above stationarity tests.

In this paper, we advocate a test for strict stationarity that
considers the entire distribution of a process rather than the first two
moments of the process, and apply this test to the USD–JPY exchange
rate.

We describe the data used in this paper in Section 2. In Section 3,
we explain our procedure to test stationarity, which is based on the
two-sample Kolmogorov–Smirnov test and Pearson's chi-square test.
In Section 4, we present the empirical results. In Section 5, we discuss
some implications of our results.

2. Data description

The tick-by-tick data we study is the USD–JPY exchange rate
provided by ICAP EBS with a recording frequency of every 1 s, for the
period of January 1998 through December 2005. The foreign exchange
market is the world's largest and liquid financial market. Most spot
interbank transactions are executed through global electronic broking
systems such as ICAP EBS and Reuters. In the USD–JPY exchange rate,
the ICAP EBS has a strong market share.

We exclude observations for special days such as Mondays,
weekends, holidays, and official intervention days (i.e., the government
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and/or the central bank intervenes in the foreign exchange market in
order to stabilize the rate), which are obviously different from regular
business days. We analyze the time series of 1-tick price changes of the
mid-quote price, which is defined as the average of the best bid and the
best ask. The best bid and the best ask, representing the lowest sell offer
and highest buy offer respectively, are recorded at the end of one-
second time slice.

In this paper, we focus on the following two time series: The first
one is the time series for the absolute price changes, which we refer to
as G; second, the time series for the number of successive price
changes in the same direction, which we refer to as D. Note that in
producing these time series, we drop observations with no price
changes. For example, a particular sequence of 14 1-tick price changes

f0:01; 0:02; 0:01;−0:02; 0;−0:03;−0:01; 0:02; 0; 0:02;−0:04; 0:01;
−0:02;−0:03g

is represented by

f0:01; 0:02; 0:01; 0:02; 0; 0:03;0:01;0:02;0; 0:02;0:04;0:01; 0:02; 0:03;g

in G sequence and

f3; 3; 2; 1; 1; 2g

in D sequence.

3. Stationarity test

One can test stationarity in Gaussian time series processes by
measuring any number of simple statistics such as the mean or
standard deviation and employing a standard statistical test. However,
such an approach is not particularly effective for high-frequency
financial time series, because from the seminal work byMantegna and
Stanley(1995), we know that the distributions of price changes have
fat tails often approximated by a power law (Ohnishi et al., 2008).
Therefore, the procedure for Gaussian processes cannot be applied to
high-frequency financial data.

Our analysis is based on a precise definition of stationarity: The
joint distribution of any two segments of data of the same length
should be identical. Formally, a stochastic process Xt is called strictly
stationary if for any set of times t1, t2,…, tn and for any k, the joint
probability distributions of {Xt1,Xt2,…,Xtn} and of {Xt1+ k,Xt2+ k,…,
Xtn+ k} coincide. That is, it requires that the joint distribution depends
only on time lags. It follows that the mean remains constant, and that
the autocorrelation function depends on only time lags, and not on the
time index.

Given this definition of stationarity, the test of stationarity may
look straightforward: namely, all we have to do is to pick up any two
segments of data of the same length, and then to see whether the
distributions of G and D are identical across the two segments.
However, the test of stationarity is not so simple since the exchange
rate exhibits a strong seasonality. It is well known by practitioners and
researchers that trading occurs differently even within a day,
depending on, for instance, whether it is conducted in the morning
or afternoon session. Specifically, we know from the previous studies
that the absolute price changes (Ohnishi et al., 2008) and activities
(Ito & Hashimoto, 2006) display an intraday seasonality. Figs. 1 and 2
present the cumulative distributions of G and D respectively, showing
clearly that these distributions differ depending on the hour of the
day.

One may want to apply some traditional methods of seasonal
adjustment, such as X-12-ARIMA, in order to eliminate this intraday
seasonality. However, such methods may not be appropriate in this
context, since the time series property of G and D may be altered
substantially by applying these methods. To avoid such risk, we
eliminate the intraday seasonality in a different way. First, we assume

that the time series can be regarded as approximately stationary at
least during the one-hour period. Second, on the basis of this
assumption, we divide the entire time series into the subsets with
one-hour periods, each of which is identified by hour h=0,1,…,23
and day t. Third, we compare the distributions of G and D for the
subset (h, t) (i.e., the set of observations belonging to hour h of day t)
with those for the subset (h, t′) (i.e., the set of observations belonging
to hour h and day t′), as illustrated schematically in Fig. 3. Note that
we compare the observations belonging to the same hour h, although
they come from different days. In this way, we conduct the
stationarity test separately for each h (h=0,1,…,23).

To test for stationarity, we compare the distribution of observations
belonging to the subset (h, t) and that belonging to the subset (h, t′) to
examine whether the two distributions are identical. We perform tests
by using the two-sample Kolmogorov–Smirnov test for continuous
distributions ofG and Pearson's chi-square test for discrete distributions
of D. The stationarity is determined at a conventional significance level
of 5%. The two-sample Kolmogorov–Smirnov test compares two
cumulative distribution functions of G; then, the maximum difference
between these two cumulative distribution functions yields the P-value.
Pearson's chi-square test is performed by considering a histogram of
D having 4 bins, that is, D=1,D=2,D=3, and D≥4. These two tests
have the advantage of being nonparametric, and without making
assumptions about the distribution function of the data, we get the
probability that the two sets of data are drawn from the same
distribution.
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Fig. 1. Cumulative probability distributions of absolute price changes G. The colors
represent the different hours of the day.
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Fig. 2. Cumulative probability distributions of the number of successive price changes
in the same direction D. The colors represent the different hours of the day.
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